-
-
Notifications
You must be signed in to change notification settings - Fork 302
/
Copy pathchat.py
436 lines (312 loc) · 15.4 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import sys, os, time, math
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from exllamav2 import(
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
ExLlamaV2Cache_8bit,
ExLlamaV2Cache_Q4,
ExLlamaV2Cache_Q6,
ExLlamaV2Cache_Q8,
ExLlamaV2Cache_TP,
ExLlamaV2Tokenizer,
model_init,
)
import argparse
import torch
from exllamav2.generator import (
ExLlamaV2StreamingGenerator,
ExLlamaV2Sampler
)
from chat_formatting import CodeBlockFormatter
from chat_prompts import prompt_formats
prompt_formats_list = list(prompt_formats.keys())
# Options
# (!!!) NOTE: These go on top of the engine arguments that can be found in `model_init.py` (!!!)
parser = argparse.ArgumentParser(description = "Simple Llama2 chat example for ExLlamaV2")
parser.add_argument("-dm", "--draft_model_dir", type = str, default = None, help = "Path to draft model directory")
parser.add_argument("-nds", "--no_draft_scale", action = "store_true", help = "If draft model has smaller context size than model, don't apply alpha (NTK) scaling to extend it")
parser.add_argument("-dn", "--draft_n_tokens", type = int, default = 5, help = "How many tokens to speculate ahead (defaults to 5)")
parser.add_argument("-modes", "--modes", action = "store_true", help = "List available modes and exit.")
parser.add_argument("-mode", "--mode", choices = prompt_formats_list, help = "Chat mode. Use llama for Llama 1/2 chat finetunes.")
parser.add_argument("-un", "--username", type = str, default = "User", help = "Username when using raw chat mode")
parser.add_argument("-bn", "--botname", type = str, default = "Chatbort", help = "Bot name when using raw chat mode")
parser.add_argument("-sp", "--system_prompt", type = str, help = "Use custom system prompt")
parser.add_argument("-nsp", "--no_system_prompt", action = "store_true", help = "Do not use any system prompt")
parser.add_argument("-temp", "--temperature", type = float, default = 0.95, help = "Sampler temperature, default = 0.95 (1 to disable)")
parser.add_argument("-smooth", "--smoothing_factor", type = float, default = 0.0, help = "Smoothing Factor, default = 0.0 (0 to disable")
parser.add_argument("-dyntemp", "--dynamic_temperature", type = str, help = "Dynamic temperature min,max,exponent, e.g. -dyntemp 0.2,1.5,1")
parser.add_argument("-topk", "--top_k", type = int, default = 50, help = "Sampler top-K, default = 50 (0 to disable)")
parser.add_argument("-topp", "--top_p", type = float, default = 0.8, help = "Sampler top-P, default = 0.8 (0 to disable)")
parser.add_argument("-topa", "--top_a", type = float, default = 0.0, help = "Sampler top-A, default = 0.0 (0 to disable)")
parser.add_argument("-skew", "--skew", type = float, default = 0.0, help = "Skew sampling, default = 0.0 (0 to disable)")
parser.add_argument("-typical", "--typical", type = float, default = 0.0, help = "Sampler typical threshold, default = 0.0 (0 to disable)")
parser.add_argument("-repp", "--repetition_penalty", type = float, default = 1.01, help = "Sampler repetition penalty, default = 1.01 (1 to disable)")
parser.add_argument("-freqpen", "--frequency_penalty", type = float, default = 0.0, help = "Sampler frequency penalty, default = 0.0 (0 to disable)")
parser.add_argument("-prespen", "--presence_penalty", type = float, default = 0.0, help = "Sampler presence penalty, default = 0.0 (0 to disable)")
parser.add_argument("-xtcp", "--xtc_probability", type = float, default = 0.0, help = "XTC sampling probability, default = 0.0 (0 to disable)")
parser.add_argument("-xtct", "--xtc_threshold", type = float, default = 0.1, help = "XTC sampling threshold, default = 0.1, ignored when xtc_probability is 0")
parser.add_argument("-drym", "--dry_multiplier", type = float, default = 0.0, help = "DRY multiplier, default = 0.0 (0 to disable)")
parser.add_argument("-drya", "--dry_allowed_length", type = int, default = 2, help = "DRY allowed length, default = 2, ignored when dry_multiplier is 0")
parser.add_argument("-dryb", "--dry_base", type = float, default = 1.75, help = "DRY base value, default = 1.75, ignored when dry_multiplier is 0")
parser.add_argument("-dryr", "--dry_range", type = int, default = 0, help = "DRY range, default = 0 (0 for unlimited range)")
parser.add_argument("-maxr", "--max_response_tokens", type = int, default = 1000, help = "Max tokens per response, default = 1000")
parser.add_argument("-resc", "--response_chunk", type = int, default = 250, help = "Space to reserve in context for reply, default = 250")
parser.add_argument("-ncf", "--no_code_formatting", action = "store_true", help = "Disable code formatting/syntax highlighting")
parser.add_argument("-c8", "--cache_8bit", action = "store_true", help = "Use 8-bit (FP8) cache")
parser.add_argument("-cq4", "--cache_q4", action = "store_true", help = "Use Q4 cache")
parser.add_argument("-cq6", "--cache_q6", action = "store_true", help = "Use Q6 cache")
parser.add_argument("-cq8", "--cache_q8", action = "store_true", help = "Use Q8 cache")
parser.add_argument("-ngram", "--ngram_decoding", action = "store_true", help = "Use n-gram speculative decoding")
parser.add_argument("-pt", "--print_timings", action = "store_true", help = "Output timings/stats after each prompt")
parser.add_argument("-amnesia", "--amnesia", action = "store_true", help = "Forget context after every response")
# Arrrgs
model_init.add_args(parser)
args = parser.parse_args()
# Prompt templates/modes
if args.modes:
print(" -- Available formats:")
for k, v in prompt_formats.items():
print(f" -- {k:12} : {v().description}")
sys.exit()
username = args.username
botname = args.botname
system_prompt = args.system_prompt
if args.no_system_prompt:
system_prompt = ""
if args.mode is None:
print(" ## Error: No mode specified.")
sys.exit()
prompt_format = prompt_formats[args.mode]()
prompt_format.botname = botname
prompt_format.username = username
if system_prompt is None: system_prompt = prompt_format.default_system_prompt()
# Initialize model and tokenizer
model_init.check_args(args)
model_init.print_options(args)
model, tokenizer = model_init.init(args, allow_auto_split = True, max_output_len = 16, skip_load = True)
# Initialize draft model if provided, assume it always fits on first device
draft_model = None
draft_cache = None
if args.draft_model_dir:
print(f" -- Draft model: {args.draft_model_dir}")
draft_config = ExLlamaV2Config()
draft_config.model_dir = args.draft_model_dir
draft_config.prepare()
if draft_config.max_seq_len < model.config.max_seq_len:
if args.no_draft_scale:
print(f" !! Warning: Draft model native max sequence length is less than sequence length for model. Speed may decrease after {draft_config.max_seq_len} tokens.")
else:
ratio = model.config.max_seq_len / draft_config.max_seq_len
alpha = -0.13436 + 0.80541 * ratio + 0.28833 * ratio ** 2
draft_config.scale_alpha_value = alpha
print(f" -- Applying draft model RoPE alpha = {alpha:.4f}")
draft_config.max_seq_len = model.config.max_seq_len
draft_config.no_flash_attn = args.no_flash_attn
draft_config.scale_pos_emb = args.rope_scale
print(" -- Loading draft model...")
draft_model = ExLlamaV2(draft_config)
draft_model.load()
if args.cache_8bit:
draft_cache = ExLlamaV2Cache_8bit(draft_model)
elif args.cache_q4:
draft_cache = ExLlamaV2Cache_Q4(draft_model)
elif args.cache_q6:
draft_cache = ExLlamaV2Cache_Q6(draft_model)
elif args.cache_q8:
draft_cache = ExLlamaV2Cache_Q8(draft_model)
else:
draft_cache = ExLlamaV2Cache(draft_model)
# Load model after draft model
print(" -- Loading model...")
model_init.post_init_load(model, args, allow_auto_split = True)
# Create cache
if args.cache_8bit:
cache_type = ExLlamaV2Cache_8bit
elif args.cache_q4:
cache_type = ExLlamaV2Cache_Q4
elif args.cache_q6:
cache_type = ExLlamaV2Cache_Q6
elif args.cache_q8:
cache_type = ExLlamaV2Cache_Q8
else:
cache_type = ExLlamaV2Cache
if model.tp_context:
cache = ExLlamaV2Cache_TP(model, base = cache_type)
else:
cache = cache_type(model, lazy = not model.loaded)
# Load model now if auto split enabled
if not model.loaded:
model.load_autosplit(cache)
# Chat context
def format_prompt(user_prompt, first):
global system_prompt, prompt_format
if first:
return prompt_format.first_prompt(bool(system_prompt)) \
.replace("<|system_prompt|>", system_prompt) \
.replace("<|user_prompt|>", user_prompt)
else:
return prompt_format.subs_prompt() \
.replace("<|user_prompt|>", user_prompt)
def encode_prompt(text):
global tokenizer, prompt_format
add_bos, add_eos, encode_special_tokens = prompt_format.encoding_options()
return tokenizer.encode(text, add_bos = add_bos, add_eos = add_eos, encode_special_tokens = encode_special_tokens)
user_prompts = []
responses_ids = []
def get_tokenized_context(max_len):
global user_prompts, responses_ids
while True:
context = torch.empty((1, 0), dtype=torch.long)
for turn in range(len(user_prompts)):
up_text = format_prompt(user_prompts[turn], context.shape[-1] == 0)
up_ids = encode_prompt(up_text)
context = torch.cat([context, up_ids], dim=-1)
if turn < len(responses_ids):
context = torch.cat([context, responses_ids[turn]], dim=-1)
if context.shape[-1] < max_len: return context
# If the context is too long, remove the first Q/A pair and try again. The system prompt will be moved to
# the first entry in the truncated context
user_prompts = user_prompts[1:]
responses_ids = responses_ids[1:]
# Generator
generator = ExLlamaV2StreamingGenerator(model, cache, tokenizer, draft_model, draft_cache, num_speculative_tokens=args.draft_n_tokens)
generator.speculative_ngram = args.ngram_decoding
settings = ExLlamaV2Sampler.Settings(
temperature = args.temperature,
top_k = args.top_k,
top_p = args.top_p,
top_a = args.top_a,
typical = args.typical,
skew = args.skew,
token_repetition_penalty = args.repetition_penalty,
token_frequency_penalty = args.frequency_penalty,
token_presence_penalty = args.presence_penalty,
smoothing_factor = args.smoothing_factor,
xtc_probability = args.xtc_probability,
xtc_threshold = args.xtc_threshold,
dry_allowed_length = args.dry_allowed_length,
dry_base = args.dry_base,
dry_multiplier = args.dry_multiplier,
dry_range = args.dry_range,
)
if args.dynamic_temperature:
dt_args = [float(alloc) for alloc in args.dynamic_temperature.split(",")]
settings.min_temp = dt_args[0]
settings.max_temp = dt_args[1]
settings.temp_exponent = dt_args[2]
max_response_tokens = args.max_response_tokens
min_space_in_context = args.response_chunk
# Stop conditions
sc = prompt_format.stop_conditions(tokenizer)
sc = [x for x in sc if x is not None]
generator.set_stop_conditions(sc)
# ANSI color codes
col_default = "\u001b[0m"
col_user = "\u001b[33;1m" # Yellow
col_bot = "\u001b[34;1m" # Blue
col_error = "\u001b[31;1m" # Magenta
col_sysprompt = "\u001b[37;1m" # Grey
# Code block formatting
codeblock_formatter = None if args.no_code_formatting else CodeBlockFormatter()
in_code_block = False
delim_overflow = ""
# Other options
print_timings = args.print_timings
amnesia = args.amnesia
# Main loop
print(f" -- Prompt format: {args.mode}")
if system_prompt:
print(f" -- System prompt:")
print()
print(col_sysprompt + system_prompt.strip() + col_default)
while True:
# Get user prompt
print()
up = input(col_user + username + ": " + col_default).strip()
print()
# Add to context
user_prompts.append(up)
# Send tokenized context to generator
active_context = get_tokenized_context(model.config.max_seq_len - min_space_in_context)
generator.begin_stream_ex(active_context, settings)
# Stream response
if prompt_format.print_bot_name():
print(col_bot + botname + ": " + col_default, end = "")
response_tokens = 0
response_text = ""
responses_ids.append(torch.empty((1, 0), dtype = torch.long))
if print_timings:
time_begin_stream = time.time()
if args.ngram_decoding or draft_model is not None: generator.reset_sd_stats()
while True:
# Get response stream
res = generator.stream_ex()
chunk = res["chunk"]
eos = res["eos"]
tokens = res["chunk_token_ids"]
if len(response_text) == 0: chunk = chunk.lstrip()
response_text += chunk
responses_ids[-1] = torch.cat([responses_ids[-1], tokens], dim = -1)
# Check for code block delimiters
# Let formatter suppress text as long as it may be part of delimiter
chunk, codeblock_delimiter = (chunk, False) if codeblock_formatter is None else codeblock_formatter.process_delimiter(chunk)
# Enter code block
if not in_code_block:
# Start of codeblock
if codeblock_delimiter:
codeblock_formatter.begin()
print("\n")
in_code_block = True
codeblock_delimiter = False
# Print
if in_code_block:
# Print unformatted
codeblock_formatter.print_code_block(chunk)
else:
# Print formatted
print(chunk, end = "")
# Exit code block
if in_code_block:
# End of code block
if codeblock_delimiter:
# Edge case when we get EOS right after code block
if eos: codeblock_formatter.print_code_block("\n")
print("\033[0m") # Reset block color to be certain
in_code_block = False
codeblock_delimiter = False
sys.stdout.flush()
# time.sleep(1)
# If model has run out of space, rebuild the context and restart stream
if generator.full():
active_context = get_tokenized_context(model.config.max_seq_len - min_space_in_context)
generator.begin_stream(active_context, settings)
# If response is too long, cut it short, and append EOS if that was a stop condition
response_tokens += 1
if response_tokens == max_response_tokens:
if tokenizer.eos_token_id in generator.stop_tokens:
responses_ids[-1] = torch.cat([responses_ids[-1], tokenizer.single_token(tokenizer.eos_token_id)], dim = -1)
print()
print(col_error + f" !! Response exceeded {max_response_tokens} tokens and was cut short." + col_default)
break
# EOS signal returned
if eos:
if prompt_format.print_extra_newline():
print()
break
# Prompt timings
if print_timings:
time_end_stream = time.time()
speed = response_tokens / (time_end_stream - time_begin_stream)
if draft_model is not None or args.ngram_decoding:
eff, acc, _, _, _ = generator.get_sd_stats()
sd_stats = f", SD eff. {eff*100:.2f}%, SD acc. {acc*100:.2f}%"
else:
sd_stats = ""
ctx_tokens = active_context.shape[-1]
print()
print(col_sysprompt + f"(Context: {ctx_tokens} tokens, response: {response_tokens} tokens, {speed:.2f} tokens/second{sd_stats})" + col_default)
# Optionally forget context after each response
if amnesia:
user_prompts = []
responses_ids = []