-
Notifications
You must be signed in to change notification settings - Fork 49
/
si5351.c
294 lines (263 loc) · 7.57 KB
/
si5351.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#include "hal.h"
#include "si5351.h"
#define SI5351_I2C_ADDR (0x60<<1)
static void
si5351_write(uint8_t reg, uint8_t dat)
{
int addr = SI5351_I2C_ADDR>>1;
uint8_t buf[] = { reg, dat };
i2cAcquireBus(&I2CD1);
(void)i2cMasterTransmitTimeout(&I2CD1, addr, buf, 2, NULL, 0, 1000);
i2cReleaseBus(&I2CD1);
}
static void
si5351_bulk_write(const uint8_t *buf, int len)
{
int addr = SI5351_I2C_ADDR>>1;
i2cAcquireBus(&I2CD1);
(void)i2cMasterTransmitTimeout(&I2CD1, addr, buf, len, NULL, 0, 1000);
i2cReleaseBus(&I2CD1);
}
void si5351_disable_output(void)
{
uint8_t reg[4];
si5351_write(SI5351_REG_3_OUTPUT_ENABLE_CONTROL, 0xff);
reg[0] = SI5351_REG_16_CLK0_CONTROL;
reg[1] = SI5351_CLK_POWERDOWN;
reg[2] = SI5351_CLK_POWERDOWN;
reg[3] = SI5351_CLK_POWERDOWN;
si5351_bulk_write(reg, 4);
}
void si5351_enable_output(void)
{
si5351_write(SI5351_REG_3_OUTPUT_ENABLE_CONTROL, 0x00);
}
void si5351_reset_pll(void)
{
//si5351_write(SI5351_REG_177_PLL_RESET, SI5351_PLL_RESET_A | SI5351_PLL_RESET_B);
si5351_write(SI5351_REG_177_PLL_RESET, 0xAC);
}
void si5351_setupPLL(uint8_t pll, /* SI5351_PLL_A or SI5351_PLL_B */
uint8_t mult,
uint32_t num,
uint32_t denom)
{
/* Get the appropriate starting point for the PLL registers */
const uint8_t pllreg_base[] = {
SI5351_REG_26_PLL_A,
SI5351_REG_34_PLL_B
};
uint32_t P1;
uint32_t P2;
uint32_t P3;
/* Feedback Multisynth Divider Equation
* where: a = mult, b = num and c = denom
* P1 register is an 18-bit value using following formula:
* P1[17:0] = 128 * mult + floor(128*(num/denom)) - 512
* P2 register is a 20-bit value using the following formula:
* P2[19:0] = 128 * num - denom * floor(128*(num/denom))
* P3 register is a 20-bit value using the following formula:
* P3[19:0] = denom
*/
/* Set the main PLL config registers */
if (num == 0)
{
/* Integer mode */
P1 = 128 * mult - 512;
P2 = 0;
P3 = 1;
}
else
{
/* Fractional mode */
//P1 = (uint32_t)(128 * mult + floor(128 * ((float)num/(float)denom)) - 512);
P1 = 128 * mult + ((128 * num) / denom) - 512;
//P2 = (uint32_t)(128 * num - denom * floor(128 * ((float)num/(float)denom)));
P2 = 128 * num - denom * ((128 * num) / denom);
P3 = denom;
}
/* The datasheet is a nightmare of typos and inconsistencies here! */
uint8_t reg[9];
reg[0] = pllreg_base[pll];
reg[1] = (P3 & 0x0000FF00) >> 8;
reg[2] = (P3 & 0x000000FF);
reg[3] = (P1 & 0x00030000) >> 16;
reg[4] = (P1 & 0x0000FF00) >> 8;
reg[5] = (P1 & 0x000000FF);
reg[6] = ((P3 & 0x000F0000) >> 12) | ((P2 & 0x000F0000) >> 16);
reg[7] = (P2 & 0x0000FF00) >> 8;
reg[8] = (P2 & 0x000000FF);
si5351_bulk_write(reg, 9);
}
void
si5351_setupMultisynth(uint8_t output,
uint8_t pllSource,
uint32_t div, // 4,6,8, 8+ ~ 900
uint32_t num,
uint32_t denom,
uint32_t rdiv, // SI5351_R_DIV_1~128
uint8_t drive_strength)
{
/* Get the appropriate starting point for the PLL registers */
const uint8_t msreg_base[] = {
SI5351_REG_42_MULTISYNTH0,
SI5351_REG_50_MULTISYNTH1,
SI5351_REG_58_MULTISYNTH2,
};
const uint8_t clkctrl[] = {
SI5351_REG_16_CLK0_CONTROL,
SI5351_REG_17_CLK1_CONTROL,
SI5351_REG_18_CLK2_CONTROL
};
uint8_t dat;
uint32_t P1;
uint32_t P2;
uint32_t P3;
uint32_t div4 = 0;
/* Output Multisynth Divider Equations
* where: a = div, b = num and c = denom
* P1 register is an 18-bit value using following formula:
* P1[17:0] = 128 * a + floor(128*(b/c)) - 512
* P2 register is a 20-bit value using the following formula:
* P2[19:0] = 128 * b - c * floor(128*(b/c))
* P3 register is a 20-bit value using the following formula:
* P3[19:0] = c
*/
/* Set the main PLL config registers */
if (div == 4) {
div4 = SI5351_DIVBY4;
P1 = P2 = 0;
P3 = 1;
} else if (num == 0) {
/* Integer mode */
P1 = 128 * div - 512;
P2 = 0;
P3 = 1;
} else {
/* Fractional mode */
P1 = 128 * div + ((128 * num) / denom) - 512;
P2 = 128 * num - denom * ((128 * num) / denom);
P3 = denom;
}
/* Set the MSx config registers */
uint8_t reg[9];
reg[0] = msreg_base[output];
reg[1] = (P3 & 0x0000FF00) >> 8;
reg[2] = (P3 & 0x000000FF);
reg[3] = ((P1 & 0x00030000) >> 16) | div4 | rdiv;
reg[4] = (P1 & 0x0000FF00) >> 8;
reg[5] = (P1 & 0x000000FF);
reg[6] = ((P3 & 0x000F0000) >> 12) | ((P2 & 0x000F0000) >> 16);
reg[7] = (P2 & 0x0000FF00) >> 8;
reg[8] = (P2 & 0x000000FF);
si5351_bulk_write(reg, 9);
/* Configure the clk control and enable the output */
dat = drive_strength | SI5351_CLK_INPUT_MULTISYNTH_N;
if (pllSource == SI5351_PLL_B)
dat |= SI5351_CLK_PLL_SELECT_B;
if (num == 0)
dat |= SI5351_CLK_INTEGER_MODE;
si5351_write(clkctrl[output], dat);
}
static uint32_t
gcd(uint32_t x, uint32_t y)
{
uint32_t z;
while (y != 0) {
z = x % y;
x = y;
y = z;
}
return x;
}
#define XTALFREQ 26000000L
#define PLL_N 32
#define PLLFREQ (XTALFREQ * PLL_N)
void
si5351_set_frequency_fixedpll(int channel, int pll, int pllfreq, int freq,
uint32_t rdiv, uint8_t drive_strength)
{
int32_t div = pllfreq / freq; // range: 8 ~ 1800
int32_t num = pllfreq - freq * div;
int32_t denom = freq;
//int32_t k = freq / (1<<20) + 1;
int32_t k = gcd(num, denom);
num /= k;
denom /= k;
while (denom >= (1<<20)) {
num >>= 1;
denom >>= 1;
}
si5351_setupMultisynth(channel, pll, div, num, denom, rdiv, drive_strength);
}
void
si5351_set_frequency_fixeddiv(int channel, int pll, int freq, int div,
uint8_t drive_strength)
{
int32_t pllfreq = freq * div;
int32_t multi = pllfreq / XTALFREQ;
int32_t num = pllfreq - multi * XTALFREQ;
int32_t denom = XTALFREQ;
int32_t k = gcd(num, denom);
num /= k;
denom /= k;
while (denom >= (1<<20)) {
num >>= 1;
denom >>= 1;
}
si5351_setupPLL(pll, multi, num, denom);
si5351_setupMultisynth(channel, pll, div, 0, 1, SI5351_R_DIV_1, drive_strength);
}
//#define drive_strength SI5351_CLK_DRIVE_STRENGTH_2MA
#define drive_strength SI5351_CLK_DRIVE_STRENGTH_8MA
int current_band = -1;
void
si5351_set_frequency(int freq)
{
int band;
uint32_t rdiv = SI5351_R_DIV_1;
if (freq <= 100000000) {
band = 0;
} else if (freq < 150000000) {
band = 1;
} else {
band = 2;
}
if (freq <= 500000) {
rdiv = SI5351_R_DIV_64;
} else if (freq <= 4000000) {
rdiv = SI5351_R_DIV_8;
}
#if 0
if (current_band != band)
si5351_disable_output();
#endif
switch (band) {
case 0:
if (rdiv == SI5351_R_DIV_8) {
freq *= 8;
} else if (rdiv == SI5351_R_DIV_64) {
freq *= 64;
}
si5351_set_frequency_fixedpll(1, SI5351_PLL_A, PLLFREQ, freq,
rdiv, drive_strength);
break;
case 1:
// Set PLL twice on changing from band 2
if (current_band == 2) {
si5351_set_frequency_fixeddiv(1, SI5351_PLL_B, freq, 6, drive_strength);
}
// div by 6 mode. both PLL A and B are dedicated for CLK0, CLK1
si5351_set_frequency_fixeddiv(1, SI5351_PLL_B, freq, 6, drive_strength);
break;
case 2:
// div by 4 mode. both PLL A and B are dedicated for CLK0, CLK1
si5351_set_frequency_fixeddiv(1, SI5351_PLL_B, freq, 4, drive_strength);
break;
}
if (current_band != band) {
si5351_reset_pll();
//si5351_enable_output();
}
current_band = band;
}