-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_inversions_j.m
51 lines (40 loc) · 1.28 KB
/
run_inversions_j.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
% RUN_INVERSIONS_J Optimize exponential distance regularization w.r.t. a range of parameters.
% Author: Timothy Sipkens, 2020-02-22
%=========================================================================%
%{
guess = [1.3,1/4,log10(1.8),0.84]; % [lambda, ratio, ld, corr]
disp('Optimizing exponential distance regularization (least-sqaures)...');
[x_ed_opt,lambda_ed_opt,out_ed_opt] = optimize.exp_dist_opx(...
Lb*A,Lb*b,grid_x,[],...
guess,x0);
disp('Inversion complete.');
disp(' ');
%}
%{
disp('Parametric study of exponential distance regularization (brute force)...');
[x_ed_par,lambda_ed_par,out_ed_par] = optimize.exp_dist_opbf(...
Lb*A,Lb*b,grid_x,[],...
x0);
disp('Inversion complete.');
disp(' ');
%}
%-{
Gd = phantom.Sigma(:,:,1);
if isempty(Gd) % for Phantom 3
[~,Gd] = phantom.p2cov(phantom.p(2),phantom.modes(2));
end
[x_ed_corr,out_ed_corr] = ...
optimize.exp_dist_op1d(Lb*A,Lb*b,lambda_ed_lam,Gd,...
grid_x,[],x0,...
[],[],'corr');
[x_ed_lmld,out_ed_lmld] = ...
optimize.exp_dist_op1d(Lb*A,Lb*b,lambda_ed_lam,Gd,...
grid_x,[],x0,...
[],[],'lmld');
%}
%{
%-- Zeroth-order Tikhonov regularization --%
% Lower limit for correlation lengths.
[x_tk0,D_tk0,L_tk0,Gpo_tk0] = invert.tikhonov(...
Lb*A,Lb*b,lambda_ed_lam,0,n_x(1));
%}