-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_inversions_g.m
115 lines (82 loc) · 2.62 KB
/
run_inversions_g.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
% RUN_INVERSIONS_G Optimize exponential distance and 1st-order Tikhonov regularization.
% Author: Timothy Sipkens, 2019-05-28
%=========================================================================%
%-- Tikhonov (1st order) -----%
disp('Running Tikhonov (1st) ...');
tic;
[x_tk1,lambda_tk1,out_tk1] = optimize.tikhonov_op(...
Lb*A,Lb*b,[1e-2,1e1],1,n_x(1),x0);
t.tk1 = toc;
disp('Inversion complete.');
disp(' ');
eps.tk1 = norm(x0-x_tk1);
%%
%-- Expectation maximization ----%
% Get initial guess
b_init = b;
b_init(b_init<(1e-5*max(b_init))) = 0;
x_init = interp2(grid_b.edges{2}',grid_b.edges{1}',...
reshape(full(b_init)./(A*ones(size(x0))),grid_b.ne),...
grid_x.elements(:,2),grid_x.elements(:,1));
x_init(isnan(x_init)) = 0;
x_init(isinf(x_init)) = 0;
x_init = sparse(max(0,x_init));
eps.init = norm(x0-x_init);
x_init_m = grid_x.marginalize(x_init);
disp('Running expectation-maximization (attempt no. 1)...');
x_em = invert.em(Lb*A,Lb*b,x_init,3,x0);
disp('Inversion complete.');
disp(' ');
eps.em = norm(x0-x_em);
%-- Expectation maximization (attempt 2) ----%
% Get initial guess
n2 = [18,21];
grid2 = Grid([grid_t.span],...
n2,'logarithmic');
B2 = grid2.transform(grid_t); % evaluate matrix modifier to transform kernel
A2 = A_t*B2;
x02 = grid2.project(grid_t,x_t); % project into basis for x
x_init2 = interp2(grid_b.edges{2}',grid_b.edges{1}',...
reshape(full(b_init)./(A2*ones(size(x02))),grid_b.ne),...
grid2.elements(:,2),grid2.elements(:,1));
x_init2(isnan(x_init)) = 0;
x_init2(isinf(x_init2)) = 0;
x_init2 = sparse(max(0,x_init2));
eps.init2 = norm(x02-x_init2);
disp('Running expectation-maximization (attempt no. 2)...');
x_em2 = invert.em(Lb*A2,Lb*b,x_init2,250);
disp('Inversion complete.');
disp(' ');
eps.em2 = norm(x02-x_em2);
%-- Expectation maximization (attempt 3) ----%
% Get initial guess
x_init3 = ones(size(x02));
disp('Running expectation-maximization (attempt no. 3)...');
x_em3 = invert.em(Lb*A2,Lb*b,x_init3,250);
disp('Inversion complete.');
disp(' ');
eps.em3 = norm(x02-x_em3);
%-- Expectation maximization (attempt 4) ----%
disp('Running expectation-maximization (attempt no. 1)...');
x_em4 = invert.em(Lb*A,Lb*b,ones(size(x_init)),3,x0);
disp('Inversion complete.');
disp(' ');
eps.em4 = norm(x0-x_em4);
%-- Plot EM results ------------------------%
%{
figure(31);
grid_x.plot2d(x_em);
colormap(cm);
colorbar;
title('EM, attempt 1 (x_{init} = interp(b_{i}/a_{i}x)');
figure(32);
grid2.plot2d(x_em2);
colormap(cm);
colorbar;
title('EM, attempt 2 (x_{init} = interp(b_{i}/a_{i}x)');
figure(33);
grid2.plot2d(x_em3);
colormap(cm);
colorbar;
title('EM, attempt 3 (x_{init} = 1)');
%}