-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMBGCN.sh
56 lines (49 loc) · 1.49 KB
/
MBGCN.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/bin/bash
# shell file for Tmall
model='MBGCN'
dataset_name='Tmall_release'
gpu_id='5'
create_embeddings='False'
es_patience="50"
embedding_size='64'
lamb='1'
mgnn_weight1='1'
mgnn_weight2='1'
mgnn_weight3='1'
mgnn_weight4='1'
relation='buy,cart,collect,click'
pretrain_path='/data3/jinbowen/multi_behavior/output/Tmall_release/Tmall_release-MF_lr1e-2-L1e-2-size64@jinbowen'
# lr_list=('3e-5')
# L2_list=('1e-5')
# lr_list=('1e-4' '3e-5' '1e-5' '3e-6')
# L2_list=('1e-2' '1e-3' '1e-4' '1e-5' '1e-6')
lr='3e-4'
L2='1e-4'
message_dropout=('0.2')
node_dropout=('0.2')
# message_dropout=('0' '0.1' '0.2' '0.3' '0.4' '0.5')
# node_dropout=('0' '0.1' '0.2' '0.3' '0.4' '0.5')
for md in ${message_dropout[@]}
do
for nd in ${node_dropout[@]}
do
name=${dataset_name}-${model}_lr${lr}-L${L2}-size${embedding_size}-lamb${lamb}-md${md}-nd${nd}@jinbowen
python main.py \
--name ${name} \
--model ${model} \
--gpu_id ${gpu_id} \
--dataset_name ${dataset_name} \
--L2_norm ${L2} \
--lr ${lr} \
--create_embeddings ${create_embeddings} \
--es_patience ${es_patience} \
--embedding_size ${embedding_size}\
--mgnn_weight ${mgnn_weight1}\
--mgnn_weight ${mgnn_weight2}\
--mgnn_weight ${mgnn_weight3}\
--mgnn_weight ${mgnn_weight4}\
--lamb ${lamb} \
--relation ${relation} \
--pretrain_path ${pretrain_path}
done
done