forked from k-han/DTC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathomniglot_DTC_unknown.py
190 lines (181 loc) · 8.71 KB
/
omniglot_DTC_unknown.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam
from torch.nn.parameter import Parameter
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score
from sklearn.metrics import adjusted_rand_score as ari_score
from sklearn.decomposition import PCA
from data.omniglotloader import omniglot_alphabet_func, omniglot_evaluation_alphabets_mapping
from utils.util import cluster_acc, Identity, AverageMeter, seed_torch, str2bool
from utils import ramps
from models.vgg import VGG
from modules.module import feat2prob, target_distribution
from tqdm import tqdm
import warnings
import os
warnings.filterwarnings("ignore", category=UserWarning)
def init_prob_kmeans(model, eval_loader, args):
torch.manual_seed(1)
model = model.to(device)
# cluster parameter initiate
model.eval()
targets = np.zeros(len(eval_loader.dataset))
feats = np.zeros((len(eval_loader.dataset), 1024))
for _, (x, _, label, idx) in enumerate(eval_loader):
x = x.to(device)
_, feat = model(x)
feat = feat.view(x.size(0), -1)
idx = idx.data.cpu().numpy()
feats[idx, :] = feat.data.cpu().numpy()
targets[idx] = label.data.cpu().numpy()
# evaluate clustering performance
pca = PCA(n_components=args.n_clusters)
feats = pca.fit_transform(feats)
kmeans = KMeans(n_clusters=args.n_clusters, n_init=20)
y_pred = kmeans.fit_predict(feats)
acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
print('Init acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
probs = feat2prob(torch.from_numpy(feats), torch.from_numpy(kmeans.cluster_centers_))
return kmeans.cluster_centers_, probs
def warmup_train(model, alphabetStr, train_loader, eval_loader, args):
optimizer = Adam(model.parameters(), lr=args.warmup_lr)
for epoch in range(args.warmup_epochs):
loss_record = AverageMeter()
model.train()
for batch_idx, (x, g_x, _, idx) in enumerate(train_loader):
_, feat = model(x.to(device))
prob = feat2prob(feat, model.center)
loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_record.update(loss.item(), x.size(0))
print('Warmup Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
test(model, eval_loader, args)
def train(model, alphabetStr, train_loader, eval_loader, args):
optimizer = Adam(model.parameters(), lr=args.lr)
for epoch in range(args.epochs):
loss_record = AverageMeter()
model.train()
w = args.rampup_coefficient * ramps.sigmoid_rampup(epoch, args.rampup_length)
for batch_idx, (x, g_x, _, idx) in enumerate(train_loader):
_, feat = model(x.to(device))
_, feat_g = model(g_x.to(device))
prob = feat2prob(feat, model.center)
prob_g = feat2prob(feat_g, model.center)
loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
mse_loss = F.mse_loss(prob, prob_g)
loss=loss + w*mse_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_record.update(loss.item(), x.size(0))
print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
_, _, _, probs = test(model, eval_loader, args)
args.p_targets= target_distribution(probs)
torch.save(model.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))
def test(model, eval_loader, args):
model.eval()
targets = np.zeros(len(eval_loader.dataset))
y_pred = np.zeros(len(eval_loader.dataset))
probs= np.zeros((len(eval_loader.dataset), args.n_clusters))
for _, (x, _, label, idx) in enumerate(eval_loader):
x = x.to(device)
_, feat = model(x)
prob = feat2prob(feat, model.center)
idx = idx.data.cpu().numpy()
y_pred[idx] = prob.data.cpu().detach().numpy().argmax(1)
targets[idx] = label.data.cpu().numpy()
probs[idx, :] = prob.cpu().detach().numpy()
# evaluate clustering performance
y_pred = y_pred.astype(np.int64)
acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
probs = torch.from_numpy(probs)
return acc, nmi, ari, probs
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description='cluster',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--warmup_lr', type=float, default=0.001)
parser.add_argument('--warmup_epochs', default=10, type=int)
parser.add_argument('--epochs', default=90, type=int)
parser.add_argument('--batch_size', default=100, type=int)
parser.add_argument('--update_interval', default=1, type=int)
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--save_txt', default=False, type=str2bool, help='save txt or not', metavar='BOOL')
parser.add_argument('--rampup_length', default=5, type=int)
parser.add_argument('--rampup_coefficient', default=100.0, type=float)
parser.add_argument('--n_clusters', default=10, type=int)
parser.add_argument('--num_workers', default=2, type=int)
parser.add_argument('--pretrain_dir', type=str, default='./data/experiments/pretrained/vgg6_omniglot_proto.pth')
parser.add_argument('--dataset_root', type=str, default='./data/datasets')
parser.add_argument('--exp_root', type=str, default='./data/experiments/')
parser.add_argument('--subfolder_name', type=str, default='run')
parser.add_argument('--save_txt_name', type=str, default='result.txt')
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
print("use cuda: {}".format(args.cuda))
device = torch.device("cuda" if args.cuda else "cpu")
seed_torch(args.seed)
alphabets_k_mapping = {
'Malayalam': 42,
'Kannada': 40,
'Syriac': 26,
'Atemayar_Qelisayer': 25,
'Gurmukhi': 34,
'Old_Church_Slavonic': 51,
'Manipuri': 39,
'Atlantean': 34,
'Sylheti': 22,
'Mongolian': 33,
'Aurek': 34,
'Angelic': 23,
'ULOG': 33,
'Oriya': 33,
'Avesta': 31,
'Tibetan': 43,
'Tengwar': 28,
'Keble': 25,
'Ge_ez': 31,
'Glagolitic': 46
}
model = VGG(n_layer='4+2', in_channels=1).to(device)
model.load_state_dict(torch.load(args.pretrain_dir), strict=False)
model.last = Identity()
init_feat_extractor = model
acc = {}
nmi = {}
ari = {}
for key, alphabetStr in omniglot_evaluation_alphabets_mapping.items():
runner_name = os.path.basename(__file__).split(".")[0]
model_dir= args.exp_root + '{}/{}'.format(runner_name, args.subfolder_name)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
args.model_dir = model_dir+'/'+'vgg6_{}.pth'.format(alphabetStr)
args.save_txt_path= args.exp_root + '{}/{}'.format(runner_name, args.save_txt_name)
train_Dloader, eval_Dloader = omniglot_alphabet_func(alphabet=alphabetStr, background=False, root=args.dataset_root)(batch_size=args.batch_size, num_workers=args.num_workers)
args.n_clusters = alphabets_k_mapping[key]
model = VGG(n_layer='4+2', out_dim=args.n_clusters, in_channels=1).to(device)
model.load_state_dict(torch.load(args.pretrain_dir), strict=False)
model.center= Parameter(torch.Tensor(args.n_clusters, args.n_clusters))
init_centers, init_probs = init_prob_kmeans(init_feat_extractor, eval_Dloader, args)
args.p_targets = target_distribution(init_probs)
model.center.data = torch.tensor(init_centers).float().to(device)
warmup_train(model, alphabetStr, train_Dloader, eval_Dloader, args)
train(model, alphabetStr, train_Dloader, eval_Dloader, args)
acc[alphabetStr], nmi[alphabetStr], ari[alphabetStr], _ = test(model, eval_Dloader, args)
print('ACC for all alphabets:',acc)
print('NMI for all alphabets:',nmi)
print('ARI for all alphabets:',ari)
avg_acc, avg_nmi, avg_ari = sum(acc.values())/float(len(acc)), sum(nmi.values())/float(len(nmi)), sum(ari.values())/float(len(ari))
print('avg ACC {:.4f}, NMI {:.4f} ARI {:.4f}'.format(avg_acc, avg_nmi, avg_ari))
if args.save_txt:
with open(args.save_txt_path, 'a') as f:
f.write("{:.4f}, {:.4f}, {:.4f}\n".format(avg_acc, avg_nmi, avg_ari))