forked from k-han/DTC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimagenet_est_k.py
152 lines (139 loc) · 6.52 KB
/
imagenet_est_k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import torch.nn as nn
import numpy as np
from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score
from sklearn.metrics import adjusted_rand_score as ari_score
from sklearn.metrics import silhouette_score
from sklearn.cluster import KMeans
from utils.faster_mix_k_means_pytorch import K_Means
from utils.util import cluster_acc, Identity, AverageMeter, seed_torch, str2bool
from data.imagenetloader import ImageNetLoader30, ImageNetLoader82from882
from models.resnet import resnet18
from tqdm import tqdm
from collections import Counter
import random
import math
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
def estimate_k(model, unlabeled_loader, labeled_loader, args):
u_num = len(unlabeled_loader.dataset)
u_targets = np.zeros(u_num)
u_feats = np.zeros((u_num, 512))
print('extracting features for unlabeld data')
for _, (x, label, idx) in enumerate(tqdm(unlabeled_loader)):
x = x.to(device)
feat = model(x)
feat = feat.view(x.size(0), -1)
idx = idx.data.cpu().numpy()
u_feats[idx, :] = feat.data.cpu().numpy()
u_targets[idx] = label.data.cpu().numpy()
cand_k = np.arange(args.max_cand_k)
#get acc for labeled data with short listed k
l_num = len(labeled_loader.dataset)
l_targets = np.zeros(l_num)
l_feats = np.zeros((l_num, 512))
print('extracting features for labeld data')
for _, (x, label, idx) in enumerate(tqdm(labeled_loader)):
x = x.to(device)
feat = model(x)
feat = feat.view(x.size(0), -1)
idx = idx.data.cpu().numpy()
l_feats[idx, :] = feat.data.cpu().numpy()
l_targets[idx] = label.data.cpu().numpy()
l_classes = set(l_targets)
num_lt_cls = int(round(len(l_classes)*args.split_ratio))
lt_classes = set(random.sample(l_classes, num_lt_cls))
lv_classes = l_classes - lt_classes
lt_feats = np.empty((0, l_feats.shape[1]))
lt_targets = np.empty(0)
for c in lt_classes:
lt_feats = np.vstack((lt_feats, l_feats[l_targets==c]))
lt_targets = np.append(lt_targets, l_targets[l_targets==c])
lv_feats = np.empty((0, l_feats.shape[1]))
lv_targets = np.empty(0)
for c in lv_classes:
lv_feats = np.vstack((lv_feats, l_feats[l_targets==c]))
lv_targets = np.append(lv_targets, l_targets[l_targets==c])
cvi_list = np.zeros(len(cand_k))
acc_list = np.zeros(len(cand_k))
cat_pred_list = np.zeros([len(cand_k),u_num+l_num])
print('estimating K ...')
for i in range(len(cand_k)):
cvi_list[i], cat_pred_i = labeled_val_fun(np.concatenate((lv_feats, u_feats)), lt_feats, lt_targets, cand_k[i]+args.num_val_cls)
cat_pred_list[i, :] = cat_pred_i
acc_list[i] = cluster_acc(lv_targets, cat_pred_i[len(lt_targets): len(lt_targets)+len(lv_targets)])
best_k = get_best_k(cvi_list[:i+1], acc_list[:i+1], cat_pred_list[:i+1], l_num)
print('current best K {}'.format(best_k))
kmeans = KMeans(n_clusters=best_k)
u_pred = kmeans.fit_predict(u_feats).astype(np.int32)
acc, nmi, ari = cluster_acc(u_targets, u_pred), nmi_score(u_targets, u_pred), ari_score(u_targets, u_pred)
print('Final K {}, acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(best_k, acc, nmi, ari))
return best_k
def labeled_val_fun(u_feats, l_feats, l_targets, k):
if device=='cuda':
torch.cuda.empty_cache()
l_num=len(l_targets)
kmeans = K_Means(k, pairwise_batch_size=256)
kmeans.fit_mix(torch.from_numpy(u_feats).to(device), torch.from_numpy(l_feats).to(device), torch.from_numpy(l_targets).to(device))
cat_pred = kmeans.labels_.cpu().numpy()
u_pred = cat_pred[l_num:]
silh_score = silhouette_score(u_feats, u_pred)
return silh_score, cat_pred
def get_best_k(cvi_list, acc_list, cat_pred_list, l_num):
idx_cvi = np.max(np.argwhere(cvi_list==np.max(cvi_list)))
idx_acc = np.max(np.argwhere(acc_list==np.max(acc_list)))
idx_best = int(math.ceil((idx_cvi+idx_acc)*1.0/2))
cat_pred = cat_pred_list[idx_best, :]
cnt_cat = Counter(cat_pred.tolist())
cnt_l = Counter(cat_pred[:l_num].tolist())
cnt_ul = Counter(cat_pred[l_num:].tolist())
bin_cat = [x[1] for x in sorted(cnt_cat.items())]
bin_l = [x[1] for x in sorted(cnt_l.items())]
bin_ul = [x[1] for x in sorted(cnt_ul.items())]
best_k = np.sum(np.array(bin_ul)/np.max(bin_ul).astype(float)>args.min_max_ratio)
return best_k
def copy_param(model, pretrain_dir, loc=None):
pre_dict = torch.load(pretrain_dir)
new=list(pre_dict.items())
model_kvpair=model.state_dict()
if loc is not None:
count=0
for key, value in model_kvpair.items()[:loc]:
layer_name,weights=new[count]
model_kvpair[key]=weights
count+=1
else:
count=0
for key, value in model_kvpair.items():
layer_name,weights=new[count]
model_kvpair[key]=weights
count+=1
model.load_state_dict(model_kvpair, strict=False)
return model
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description='cluster',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--n_clusters', default=100, type=int)
parser.add_argument('--num_val_cls', default=82, type=int)
parser.add_argument('--max_cand_k', default=100, type=int)
parser.add_argument('--split_ratio', type=float, default=0.9)
parser.add_argument('--min_max_ratio', type=float, default=0.3)
parser.add_argument('--pretrain_dir', type=str, default='./data/experiments/pretrained/resnet18_imagenet_classif_800.pth')
parser.add_argument('--dataset_root', type=str, default='./data/datasets/ImageNet/')
parser.add_argument('--subset', type=str, default='A')
parser.add_argument('--seed', default=1, type=int)
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
seed_torch(args.seed)
model= resnet18(num_classes=800)
model=copy_param(model, args.pretrain_dir)
model.last = Identity()
model = model.to(device)
val_loader = ImageNetLoader82from882(batch_size=args.batch_size, num_workers=2, num_val_cls=args.num_val_cls, path=args.dataset_root)
loader_30_eval = ImageNetLoader30(batch_size=args.batch_size, path=args.dataset_root, subset=args.subset, aug=None)
n_clusters = estimate_k(model, loader_30_eval, val_loader, args)