-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalpha_gan.py
190 lines (153 loc) · 7.25 KB
/
alpha_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply, GaussianNoise
from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D
from keras.layers import MaxPooling2D, concatenate
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras import losses
from keras.utils import to_categorical
import keras.backend as K
from test_model import test_model
class AlphaGAN():
def __init__(self,latent_dim,lr_dis,loss,experiment,test_X,test_y,X_train):
self.test_X=test_X
self.test_y=test_y
self.X_train=X_train
self.x_shape = (self.X_train.shape[1],)
self.latent_dim = latent_dim
self.loss=loss
self.experiment=experiment
__optimizer = Adam(lr_dis, 0.5)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss=[self.loss],optimizer=__optimizer,metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# Build the encoder
self.encoder = self.build_encoder()
# The part of the bigan that trains the discriminator and encoder
self.discriminator.trainable = False
# Generate x from sampled noise
z = Input(shape=(self.latent_dim, ))
x_ = self.generator(z)
# Encode x
x = Input(shape=self.x_shape)
z_ = self.encoder(x)
reconstructed_x = self.generator(z_)
# Latent -> x is fake, and x -> latent is valid
fake = self.discriminator([z, x_])
valid = self.discriminator([z_, x])
# Set up and compile the combined model
# Trains generator to fool the discriminator
self.alphagan_generator = Model([z, x], [fake, valid,reconstructed_x])
self.alphagan_generator.compile(loss=[self.loss, self.loss,self.loss],
optimizer=__optimizer)
def train_model(self, epochs, batch_size, samples_interval):
with self.experiment.train():
# Adversarial ground truths
valid = np.ones((batch_size, 1))*0.9 # label smoothing
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Sample noise and generate x
z = np.random.normal(size=(batch_size, self.latent_dim))
x_ = self.generator.predict(z)
# Select a random batch of x and encode
idx = np.random.randint(0, self.X_train.shape[0], batch_size)
x = self.X_train[idx]
z_ = self.encoder.predict(x)
reconstructed_x = self.generator.predict(z_)
# Train the discriminator (x -> z is valid, z -> x is fake)
d_loss_real = self.discriminator.train_on_batch([z_, x], valid)
d_loss_fake = self.discriminator.train_on_batch([z, x_], fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
# Train the generator (z -> x is valid and x -> z is is invalid)
g_loss = self.alphagan_generator.train_on_batch([z, x], [valid, fake,x])
# Plot the progress
# we use the generator reconstruction loss only in training
print ("%d [D loss: %f, acc: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss[0]))
self.experiment.log_metric("Discriminator Loss", d_loss[0], step=epoch)
self.experiment.log_metric("Generator+Reconstruction Loss", g_loss[0], step=epoch)
self.experiment.log_metric("Discrimination Accuracy", 100*d_loss[1], step=epoch)
# If at save interval => save generated x samples
if (epoch+1) % samples_interval == 0:
self.sample_interval(epoch,self.test_X,self.test_y, self.experiment)
def sample_interval(self,epoch,test_X,test_y,experiment):
test_model(self,epoch,test_X,test_y, self.experiment)
def build_encoder(self):
model = Sequential()
model.add(Dense(64,input_shape=self.x_shape))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(64))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(self.latent_dim))
model.name="encoder"
model.summary()
x = Input(shape=self.x_shape)
z = model(x)
return Model(x, z)
def build_generator(self):
model = Sequential()
model.add(Dense(64, input_dim=self.latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(64))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.x_shape), activation='tanh'))
model.add(Reshape(self.x_shape))
model.name="generator"
model.summary()
z = Input(shape=(self.latent_dim,))
gen_x = model(z)
return Model(z, gen_x)
def build_discriminator(self):
z = Input(shape=(self.latent_dim, ))
x = Input(shape=self.x_shape)
d_in = concatenate([z, x])
model = Dense(128)(d_in)
model = LeakyReLU(alpha=0.2)(model)
model = Dropout(0.5)(model)
model = Dense(128)(model)
model = LeakyReLU(alpha=0.2)(model)
model = Dropout(0.5)(model)
model = Dense(128)(model)
model = LeakyReLU(alpha=0.2)(model)
model = Dropout(0.5)(model)
validity = Dense(1, activation="sigmoid")(model)
model = Model([z, x], validity)
model.name="discriminator"
model.summary()
return model
def get_losses(self,x):
with self.experiment.test():
batch_size = x.shape[0]
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
z = np.random.normal(size=(batch_size, self.latent_dim))
x_ = self.generator.predict(z)
# Select and encode
z_ = self.encoder.predict(x)
reconstructed_x = self.generator.predict(z_)
# Train the discriminator (x -> z is valid, z -> x is fake)
d_loss_real = self.discriminator.evaluate([z_, x], valid,verbose=0)
d_loss_fake = self.discriminator.evaluate([z, x_], fake,verbose=0)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# valid, fake are the output of the generator, everything that comes from real data is valid ,everything else not
# Full model needs all inputs and output loss
g_loss = self.alphagan_generator.evaluate([z, x], [valid, fake,reconstructed_x],verbose=0)
#return discrimination loss and reconstruction loss - Binary cross entropy
return d_loss[0] + g_loss[0]