forked from recastnavigation/recastnavigation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Sample_SoloMesh.cpp
754 lines (656 loc) · 23.4 KB
/
Sample_SoloMesh.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "SDL.h"
#include "SDL_opengl.h"
#include "imgui.h"
#include "InputGeom.h"
#include "Sample.h"
#include "Sample_SoloMesh.h"
#include "Recast.h"
#include "RecastDebugDraw.h"
#include "RecastDump.h"
#include "DetourNavMesh.h"
#include "DetourNavMeshBuilder.h"
#include "DetourDebugDraw.h"
#include "NavMeshTesterTool.h"
#include "NavMeshPruneTool.h"
#include "OffMeshConnectionTool.h"
#include "ConvexVolumeTool.h"
#include "CrowdTool.h"
#ifdef WIN32
# define snprintf _snprintf
#endif
Sample_SoloMesh::Sample_SoloMesh() :
m_keepInterResults(true),
m_totalBuildTimeMs(0),
m_triareas(0),
m_solid(0),
m_chf(0),
m_cset(0),
m_pmesh(0),
m_dmesh(0),
m_drawMode(DRAWMODE_NAVMESH)
{
setTool(new NavMeshTesterTool);
}
Sample_SoloMesh::~Sample_SoloMesh()
{
cleanup();
}
void Sample_SoloMesh::cleanup()
{
delete [] m_triareas;
m_triareas = 0;
rcFreeHeightField(m_solid);
m_solid = 0;
rcFreeCompactHeightfield(m_chf);
m_chf = 0;
rcFreeContourSet(m_cset);
m_cset = 0;
rcFreePolyMesh(m_pmesh);
m_pmesh = 0;
rcFreePolyMeshDetail(m_dmesh);
m_dmesh = 0;
dtFreeNavMesh(m_navMesh);
m_navMesh = 0;
}
void Sample_SoloMesh::handleSettings()
{
Sample::handleCommonSettings();
if (imguiCheck("Keep Itermediate Results", m_keepInterResults))
m_keepInterResults = !m_keepInterResults;
imguiSeparator();
imguiIndent();
imguiIndent();
if (imguiButton("Save"))
{
Sample::saveAll("solo_navmesh.bin", m_navMesh);
}
if (imguiButton("Load"))
{
dtFreeNavMesh(m_navMesh);
m_navMesh = Sample::loadAll("solo_navmesh.bin");
m_navQuery->init(m_navMesh, 2048);
}
imguiUnindent();
imguiUnindent();
char msg[64];
snprintf(msg, 64, "Build Time: %.1fms", m_totalBuildTimeMs);
imguiLabel(msg);
imguiSeparator();
}
void Sample_SoloMesh::handleTools()
{
int type = !m_tool ? TOOL_NONE : m_tool->type();
if (imguiCheck("Test Navmesh", type == TOOL_NAVMESH_TESTER))
{
setTool(new NavMeshTesterTool);
}
if (imguiCheck("Prune Navmesh", type == TOOL_NAVMESH_PRUNE))
{
setTool(new NavMeshPruneTool);
}
if (imguiCheck("Create Off-Mesh Connections", type == TOOL_OFFMESH_CONNECTION))
{
setTool(new OffMeshConnectionTool);
}
if (imguiCheck("Create Convex Volumes", type == TOOL_CONVEX_VOLUME))
{
setTool(new ConvexVolumeTool);
}
if (imguiCheck("Create Crowds", type == TOOL_CROWD))
{
setTool(new CrowdTool);
}
imguiSeparatorLine();
imguiIndent();
if (m_tool)
m_tool->handleMenu();
imguiUnindent();
}
void Sample_SoloMesh::handleDebugMode()
{
// Check which modes are valid.
bool valid[MAX_DRAWMODE];
for (int i = 0; i < MAX_DRAWMODE; ++i)
valid[i] = false;
if (m_geom)
{
valid[DRAWMODE_NAVMESH] = m_navMesh != 0;
valid[DRAWMODE_NAVMESH_TRANS] = m_navMesh != 0;
valid[DRAWMODE_NAVMESH_BVTREE] = m_navMesh != 0;
valid[DRAWMODE_NAVMESH_NODES] = m_navQuery != 0;
valid[DRAWMODE_NAVMESH_INVIS] = m_navMesh != 0;
valid[DRAWMODE_MESH] = true;
valid[DRAWMODE_VOXELS] = m_solid != 0;
valid[DRAWMODE_VOXELS_WALKABLE] = m_solid != 0;
valid[DRAWMODE_COMPACT] = m_chf != 0;
valid[DRAWMODE_COMPACT_DISTANCE] = m_chf != 0;
valid[DRAWMODE_COMPACT_REGIONS] = m_chf != 0;
valid[DRAWMODE_REGION_CONNECTIONS] = m_cset != 0;
valid[DRAWMODE_RAW_CONTOURS] = m_cset != 0;
valid[DRAWMODE_BOTH_CONTOURS] = m_cset != 0;
valid[DRAWMODE_CONTOURS] = m_cset != 0;
valid[DRAWMODE_POLYMESH] = m_pmesh != 0;
valid[DRAWMODE_POLYMESH_DETAIL] = m_dmesh != 0;
}
int unavail = 0;
for (int i = 0; i < MAX_DRAWMODE; ++i)
if (!valid[i]) unavail++;
if (unavail == MAX_DRAWMODE)
return;
imguiLabel("Draw");
if (imguiCheck("Input Mesh", m_drawMode == DRAWMODE_MESH, valid[DRAWMODE_MESH]))
m_drawMode = DRAWMODE_MESH;
if (imguiCheck("Navmesh", m_drawMode == DRAWMODE_NAVMESH, valid[DRAWMODE_NAVMESH]))
m_drawMode = DRAWMODE_NAVMESH;
if (imguiCheck("Navmesh Invis", m_drawMode == DRAWMODE_NAVMESH_INVIS, valid[DRAWMODE_NAVMESH_INVIS]))
m_drawMode = DRAWMODE_NAVMESH_INVIS;
if (imguiCheck("Navmesh Trans", m_drawMode == DRAWMODE_NAVMESH_TRANS, valid[DRAWMODE_NAVMESH_TRANS]))
m_drawMode = DRAWMODE_NAVMESH_TRANS;
if (imguiCheck("Navmesh BVTree", m_drawMode == DRAWMODE_NAVMESH_BVTREE, valid[DRAWMODE_NAVMESH_BVTREE]))
m_drawMode = DRAWMODE_NAVMESH_BVTREE;
if (imguiCheck("Navmesh Nodes", m_drawMode == DRAWMODE_NAVMESH_NODES, valid[DRAWMODE_NAVMESH_NODES]))
m_drawMode = DRAWMODE_NAVMESH_NODES;
if (imguiCheck("Voxels", m_drawMode == DRAWMODE_VOXELS, valid[DRAWMODE_VOXELS]))
m_drawMode = DRAWMODE_VOXELS;
if (imguiCheck("Walkable Voxels", m_drawMode == DRAWMODE_VOXELS_WALKABLE, valid[DRAWMODE_VOXELS_WALKABLE]))
m_drawMode = DRAWMODE_VOXELS_WALKABLE;
if (imguiCheck("Compact", m_drawMode == DRAWMODE_COMPACT, valid[DRAWMODE_COMPACT]))
m_drawMode = DRAWMODE_COMPACT;
if (imguiCheck("Compact Distance", m_drawMode == DRAWMODE_COMPACT_DISTANCE, valid[DRAWMODE_COMPACT_DISTANCE]))
m_drawMode = DRAWMODE_COMPACT_DISTANCE;
if (imguiCheck("Compact Regions", m_drawMode == DRAWMODE_COMPACT_REGIONS, valid[DRAWMODE_COMPACT_REGIONS]))
m_drawMode = DRAWMODE_COMPACT_REGIONS;
if (imguiCheck("Region Connections", m_drawMode == DRAWMODE_REGION_CONNECTIONS, valid[DRAWMODE_REGION_CONNECTIONS]))
m_drawMode = DRAWMODE_REGION_CONNECTIONS;
if (imguiCheck("Raw Contours", m_drawMode == DRAWMODE_RAW_CONTOURS, valid[DRAWMODE_RAW_CONTOURS]))
m_drawMode = DRAWMODE_RAW_CONTOURS;
if (imguiCheck("Both Contours", m_drawMode == DRAWMODE_BOTH_CONTOURS, valid[DRAWMODE_BOTH_CONTOURS]))
m_drawMode = DRAWMODE_BOTH_CONTOURS;
if (imguiCheck("Contours", m_drawMode == DRAWMODE_CONTOURS, valid[DRAWMODE_CONTOURS]))
m_drawMode = DRAWMODE_CONTOURS;
if (imguiCheck("Poly Mesh", m_drawMode == DRAWMODE_POLYMESH, valid[DRAWMODE_POLYMESH]))
m_drawMode = DRAWMODE_POLYMESH;
if (imguiCheck("Poly Mesh Detail", m_drawMode == DRAWMODE_POLYMESH_DETAIL, valid[DRAWMODE_POLYMESH_DETAIL]))
m_drawMode = DRAWMODE_POLYMESH_DETAIL;
if (unavail)
{
imguiValue("Tick 'Keep Itermediate Results'");
imguiValue("to see more debug mode options.");
}
}
void Sample_SoloMesh::handleRender()
{
if (!m_geom || !m_geom->getMesh())
return;
glEnable(GL_FOG);
glDepthMask(GL_TRUE);
const float texScale = 1.0f / (m_cellSize * 10.0f);
if (m_drawMode != DRAWMODE_NAVMESH_TRANS)
{
// Draw mesh
duDebugDrawTriMeshSlope(&m_dd, m_geom->getMesh()->getVerts(), m_geom->getMesh()->getVertCount(),
m_geom->getMesh()->getTris(), m_geom->getMesh()->getNormals(), m_geom->getMesh()->getTriCount(),
m_agentMaxSlope, texScale);
m_geom->drawOffMeshConnections(&m_dd);
}
glDisable(GL_FOG);
glDepthMask(GL_FALSE);
// Draw bounds
const float* bmin = m_geom->getNavMeshBoundsMin();
const float* bmax = m_geom->getNavMeshBoundsMax();
duDebugDrawBoxWire(&m_dd, bmin[0],bmin[1],bmin[2], bmax[0],bmax[1],bmax[2], duRGBA(255,255,255,128), 1.0f);
m_dd.begin(DU_DRAW_POINTS, 5.0f);
m_dd.vertex(bmin[0],bmin[1],bmin[2],duRGBA(255,255,255,128));
m_dd.end();
if (m_navMesh && m_navQuery &&
(m_drawMode == DRAWMODE_NAVMESH ||
m_drawMode == DRAWMODE_NAVMESH_TRANS ||
m_drawMode == DRAWMODE_NAVMESH_BVTREE ||
m_drawMode == DRAWMODE_NAVMESH_NODES ||
m_drawMode == DRAWMODE_NAVMESH_INVIS))
{
if (m_drawMode != DRAWMODE_NAVMESH_INVIS)
duDebugDrawNavMeshWithClosedList(&m_dd, *m_navMesh, *m_navQuery, m_navMeshDrawFlags);
if (m_drawMode == DRAWMODE_NAVMESH_BVTREE)
duDebugDrawNavMeshBVTree(&m_dd, *m_navMesh);
if (m_drawMode == DRAWMODE_NAVMESH_NODES)
duDebugDrawNavMeshNodes(&m_dd, *m_navQuery);
duDebugDrawNavMeshPolysWithFlags(&m_dd, *m_navMesh, SAMPLE_POLYFLAGS_DISABLED, duRGBA(0,0,0,128));
}
glDepthMask(GL_TRUE);
if (m_chf && m_drawMode == DRAWMODE_COMPACT)
duDebugDrawCompactHeightfieldSolid(&m_dd, *m_chf);
if (m_chf && m_drawMode == DRAWMODE_COMPACT_DISTANCE)
duDebugDrawCompactHeightfieldDistance(&m_dd, *m_chf);
if (m_chf && m_drawMode == DRAWMODE_COMPACT_REGIONS)
duDebugDrawCompactHeightfieldRegions(&m_dd, *m_chf);
if (m_solid && m_drawMode == DRAWMODE_VOXELS)
{
glEnable(GL_FOG);
duDebugDrawHeightfieldSolid(&m_dd, *m_solid);
glDisable(GL_FOG);
}
if (m_solid && m_drawMode == DRAWMODE_VOXELS_WALKABLE)
{
glEnable(GL_FOG);
duDebugDrawHeightfieldWalkable(&m_dd, *m_solid);
glDisable(GL_FOG);
}
if (m_cset && m_drawMode == DRAWMODE_RAW_CONTOURS)
{
glDepthMask(GL_FALSE);
duDebugDrawRawContours(&m_dd, *m_cset);
glDepthMask(GL_TRUE);
}
if (m_cset && m_drawMode == DRAWMODE_BOTH_CONTOURS)
{
glDepthMask(GL_FALSE);
duDebugDrawRawContours(&m_dd, *m_cset, 0.5f);
duDebugDrawContours(&m_dd, *m_cset);
glDepthMask(GL_TRUE);
}
if (m_cset && m_drawMode == DRAWMODE_CONTOURS)
{
glDepthMask(GL_FALSE);
duDebugDrawContours(&m_dd, *m_cset);
glDepthMask(GL_TRUE);
}
if (m_chf && m_cset && m_drawMode == DRAWMODE_REGION_CONNECTIONS)
{
duDebugDrawCompactHeightfieldRegions(&m_dd, *m_chf);
glDepthMask(GL_FALSE);
duDebugDrawRegionConnections(&m_dd, *m_cset);
glDepthMask(GL_TRUE);
}
if (m_pmesh && m_drawMode == DRAWMODE_POLYMESH)
{
glDepthMask(GL_FALSE);
duDebugDrawPolyMesh(&m_dd, *m_pmesh);
glDepthMask(GL_TRUE);
}
if (m_dmesh && m_drawMode == DRAWMODE_POLYMESH_DETAIL)
{
glDepthMask(GL_FALSE);
duDebugDrawPolyMeshDetail(&m_dd, *m_dmesh);
glDepthMask(GL_TRUE);
}
m_geom->drawConvexVolumes(&m_dd);
if (m_tool)
m_tool->handleRender();
renderToolStates();
glDepthMask(GL_TRUE);
}
void Sample_SoloMesh::handleRenderOverlay(double* proj, double* model, int* view)
{
if (m_tool)
m_tool->handleRenderOverlay(proj, model, view);
renderOverlayToolStates(proj, model, view);
}
void Sample_SoloMesh::handleMeshChanged(class InputGeom* geom)
{
Sample::handleMeshChanged(geom);
dtFreeNavMesh(m_navMesh);
m_navMesh = 0;
if (m_tool)
{
m_tool->reset();
m_tool->init(this);
}
resetToolStates();
initToolStates(this);
}
bool Sample_SoloMesh::handleBuild()
{
if (!m_geom || !m_geom->getMesh())
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified.");
return false;
}
cleanup();
const float* bmin = m_geom->getNavMeshBoundsMin();
const float* bmax = m_geom->getNavMeshBoundsMax();
const float* verts = m_geom->getMesh()->getVerts();
const int nverts = m_geom->getMesh()->getVertCount();
const int* tris = m_geom->getMesh()->getTris();
const int ntris = m_geom->getMesh()->getTriCount();
//
// Step 1. Initialize build config.
//
// Init build configuration from GUI
memset(&m_cfg, 0, sizeof(m_cfg));
m_cfg.cs = m_cellSize;
m_cfg.ch = m_cellHeight;
m_cfg.walkableSlopeAngle = m_agentMaxSlope;
m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch);
m_cfg.walkableClimb = (int)floorf(m_agentMaxClimb / m_cfg.ch);
m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs);
m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize);
m_cfg.maxSimplificationError = m_edgeMaxError;
m_cfg.minRegionArea = (int)rcSqr(m_regionMinSize); // Note: area = size*size
m_cfg.mergeRegionArea = (int)rcSqr(m_regionMergeSize); // Note: area = size*size
m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly;
m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist;
m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError;
// Set the area where the navigation will be build.
// Here the bounds of the input mesh are used, but the
// area could be specified by an user defined box, etc.
rcVcopy(m_cfg.bmin, bmin);
rcVcopy(m_cfg.bmax, bmax);
rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cfg.cs, &m_cfg.width, &m_cfg.height);
// Reset build times gathering.
m_ctx->resetTimers();
// Start the build process.
m_ctx->startTimer(RC_TIMER_TOTAL);
m_ctx->log(RC_LOG_PROGRESS, "Building navigation:");
m_ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height);
m_ctx->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", nverts/1000.0f, ntris/1000.0f);
//
// Step 2. Rasterize input polygon soup.
//
// Allocate voxel heightfield where we rasterize our input data to.
m_solid = rcAllocHeightfield();
if (!m_solid)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'.");
return false;
}
if (!rcCreateHeightfield(m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield.");
return false;
}
// Allocate array that can hold triangle area types.
// If you have multiple meshes you need to process, allocate
// and array which can hold the max number of triangles you need to process.
m_triareas = new unsigned char[ntris];
if (!m_triareas)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (%d).", ntris);
return false;
}
// Find triangles which are walkable based on their slope and rasterize them.
// If your input data is multiple meshes, you can transform them here, calculate
// the are type for each of the meshes and rasterize them.
memset(m_triareas, 0, ntris*sizeof(unsigned char));
rcMarkWalkableTriangles(m_ctx, m_cfg.walkableSlopeAngle, verts, nverts, tris, ntris, m_triareas);
if (!rcRasterizeTriangles(m_ctx, verts, nverts, tris, m_triareas, ntris, *m_solid, m_cfg.walkableClimb))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not rasterize triangles.");
return false;
}
if (!m_keepInterResults)
{
delete [] m_triareas;
m_triareas = 0;
}
//
// Step 3. Filter walkable surfaces.
//
// Once all geometry is rasterized, we do initial pass of filtering to
// remove unwanted overhangs caused by the conservative rasterization
// as well as filter spans where the character cannot possibly stand.
if (m_filterLowHangingObstacles)
rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, *m_solid);
if (m_filterLedgeSpans)
rcFilterLedgeSpans(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid);
if (m_filterWalkableLowHeightSpans)
rcFilterWalkableLowHeightSpans(m_ctx, m_cfg.walkableHeight, *m_solid);
//
// Step 4. Partition walkable surface to simple regions.
//
// Compact the heightfield so that it is faster to handle from now on.
// This will result more cache coherent data as well as the neighbours
// between walkable cells will be calculated.
m_chf = rcAllocCompactHeightfield();
if (!m_chf)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'.");
return false;
}
if (!rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data.");
return false;
}
if (!m_keepInterResults)
{
rcFreeHeightField(m_solid);
m_solid = 0;
}
// Erode the walkable area by agent radius.
if (!rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, *m_chf))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode.");
return false;
}
// (Optional) Mark areas.
const ConvexVolume* vols = m_geom->getConvexVolumes();
for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i)
rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf);
// Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas.
// There are 3 partitioning methods, each with some pros and cons:
// 1) Watershed partitioning
// - the classic Recast partitioning
// - creates the nicest tessellation
// - usually slowest
// - partitions the heightfield into nice regions without holes or overlaps
// - the are some corner cases where this method creates produces holes and overlaps
// - holes may appear when a small obstacles is close to large open area (triangulation can handle this)
// - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail
// * generally the best choice if you precompute the navmesh, use this if you have large open areas
// 2) Monotone partitioning
// - fastest
// - partitions the heightfield into regions without holes and overlaps (guaranteed)
// - creates long thin polygons, which sometimes causes paths with detours
// * use this if you want fast navmesh generation
// 3) Layer partitoining
// - quite fast
// - partitions the heighfield into non-overlapping regions
// - relies on the triangulation code to cope with holes (thus slower than monotone partitioning)
// - produces better triangles than monotone partitioning
// - does not have the corner cases of watershed partitioning
// - can be slow and create a bit ugly tessellation (still better than monotone)
// if you have large open areas with small obstacles (not a problem if you use tiles)
// * good choice to use for tiled navmesh with medium and small sized tiles
if (m_partitionType == SAMPLE_PARTITION_WATERSHED)
{
// Prepare for region partitioning, by calculating distance field along the walkable surface.
if (!rcBuildDistanceField(m_ctx, *m_chf))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field.");
return false;
}
// Partition the walkable surface into simple regions without holes.
if (!rcBuildRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build watershed regions.");
return false;
}
}
else if (m_partitionType == SAMPLE_PARTITION_MONOTONE)
{
// Partition the walkable surface into simple regions without holes.
// Monotone partitioning does not need distancefield.
if (!rcBuildRegionsMonotone(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build monotone regions.");
return false;
}
}
else // SAMPLE_PARTITION_LAYERS
{
// Partition the walkable surface into simple regions without holes.
if (!rcBuildLayerRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build layer regions.");
return false;
}
}
//
// Step 5. Trace and simplify region contours.
//
// Create contours.
m_cset = rcAllocContourSet();
if (!m_cset)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'.");
return false;
}
if (!rcBuildContours(m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create contours.");
return false;
}
//
// Step 6. Build polygons mesh from contours.
//
// Build polygon navmesh from the contours.
m_pmesh = rcAllocPolyMesh();
if (!m_pmesh)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'.");
return false;
}
if (!rcBuildPolyMesh(m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours.");
return false;
}
//
// Step 7. Create detail mesh which allows to access approximate height on each polygon.
//
m_dmesh = rcAllocPolyMeshDetail();
if (!m_dmesh)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmdtl'.");
return false;
}
if (!rcBuildPolyMeshDetail(m_ctx, *m_pmesh, *m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, *m_dmesh))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build detail mesh.");
return false;
}
if (!m_keepInterResults)
{
rcFreeCompactHeightfield(m_chf);
m_chf = 0;
rcFreeContourSet(m_cset);
m_cset = 0;
}
// At this point the navigation mesh data is ready, you can access it from m_pmesh.
// See duDebugDrawPolyMesh or dtCreateNavMeshData as examples how to access the data.
//
// (Optional) Step 8. Create Detour data from Recast poly mesh.
//
// The GUI may allow more max points per polygon than Detour can handle.
// Only build the detour navmesh if we do not exceed the limit.
if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
{
unsigned char* navData = 0;
int navDataSize = 0;
// Update poly flags from areas.
for (int i = 0; i < m_pmesh->npolys; ++i)
{
if (m_pmesh->areas[i] == RC_WALKABLE_AREA)
m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND;
if (m_pmesh->areas[i] == SAMPLE_POLYAREA_GROUND ||
m_pmesh->areas[i] == SAMPLE_POLYAREA_GRASS ||
m_pmesh->areas[i] == SAMPLE_POLYAREA_ROAD)
{
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK;
}
else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_WATER)
{
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_SWIM;
}
else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_DOOR)
{
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR;
}
}
dtNavMeshCreateParams params;
memset(¶ms, 0, sizeof(params));
params.verts = m_pmesh->verts;
params.vertCount = m_pmesh->nverts;
params.polys = m_pmesh->polys;
params.polyAreas = m_pmesh->areas;
params.polyFlags = m_pmesh->flags;
params.polyCount = m_pmesh->npolys;
params.nvp = m_pmesh->nvp;
params.detailMeshes = m_dmesh->meshes;
params.detailVerts = m_dmesh->verts;
params.detailVertsCount = m_dmesh->nverts;
params.detailTris = m_dmesh->tris;
params.detailTriCount = m_dmesh->ntris;
params.offMeshConVerts = m_geom->getOffMeshConnectionVerts();
params.offMeshConRad = m_geom->getOffMeshConnectionRads();
params.offMeshConDir = m_geom->getOffMeshConnectionDirs();
params.offMeshConAreas = m_geom->getOffMeshConnectionAreas();
params.offMeshConFlags = m_geom->getOffMeshConnectionFlags();
params.offMeshConUserID = m_geom->getOffMeshConnectionId();
params.offMeshConCount = m_geom->getOffMeshConnectionCount();
params.walkableHeight = m_agentHeight;
params.walkableRadius = m_agentRadius;
params.walkableClimb = m_agentMaxClimb;
rcVcopy(params.bmin, m_pmesh->bmin);
rcVcopy(params.bmax, m_pmesh->bmax);
params.cs = m_cfg.cs;
params.ch = m_cfg.ch;
params.buildBvTree = true;
if (!dtCreateNavMeshData(¶ms, &navData, &navDataSize))
{
m_ctx->log(RC_LOG_ERROR, "Could not build Detour navmesh.");
return false;
}
m_navMesh = dtAllocNavMesh();
if (!m_navMesh)
{
dtFree(navData);
m_ctx->log(RC_LOG_ERROR, "Could not create Detour navmesh");
return false;
}
dtStatus status;
status = m_navMesh->init(navData, navDataSize, DT_TILE_FREE_DATA);
if (dtStatusFailed(status))
{
dtFree(navData);
m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh");
return false;
}
status = m_navQuery->init(m_navMesh, 2048);
if (dtStatusFailed(status))
{
m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh query");
return false;
}
}
m_ctx->stopTimer(RC_TIMER_TOTAL);
// Show performance stats.
duLogBuildTimes(*m_ctx, m_ctx->getAccumulatedTime(RC_TIMER_TOTAL));
m_ctx->log(RC_LOG_PROGRESS, ">> Polymesh: %d vertices %d polygons", m_pmesh->nverts, m_pmesh->npolys);
m_totalBuildTimeMs = m_ctx->getAccumulatedTime(RC_TIMER_TOTAL)/1000.0f;
if (m_tool)
m_tool->init(this);
initToolStates(this);
return true;
}