-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
245 lines (189 loc) · 8.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.distributed as dist
from torch.utils.data import DataLoader
import torch.nn.functional as F
from tensorboardX import SummaryWriter
from dataloader.mvs_dataset import MVSTrainSet, MVSTestSet
from networks.ucsnet import UCSNet
from utils.utils import *
import argparse, os, sys, time, gc, datetime
import os.path as osp
cudnn.benchmark = True
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
is_distributed = num_gpus > 1
parser = argparse.ArgumentParser(description='Deep stereo using adaptive cost volume.')
parser.add_argument('--root_path', type=str, help='path to root directory.')
parser.add_argument('--train_list', type=str, help='train scene list.', default='./dataloader/datalist/dtu/train.txt')
parser.add_argument('--val_list', type=str, help='val scene list.', default='./dataloader/datalist/dtu/val.txt')
parser.add_argument('--save_path', type=str, help='path to save checkpoints.')
parser.add_argument('--epochs', type=int, default=60)
parser.add_argument('--lr', type=float, default=0.0016)
parser.add_argument('--lr_idx', type=str, default="10,12,14:0.5")
parser.add_argument('--loss_weights', type=str, default="0.5,1.0,2.0")
parser.add_argument('--wd', type=float, default=0.0, help='weight decay')
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--num_views', type=int, help='num of candidate views', default=2)
parser.add_argument('--lamb', type=float, help='the interval coefficient.', default=1.5)
parser.add_argument('--net_configs', type=str, help='number of samples for each stage.', default='64,32,8')
parser.add_argument('--log_freq', type=int, default=50, help='print and summary frequency')
parser.add_argument('--save_freq', type=int, default=1, help='save checkpoint frequency.')
parser.add_argument('--eval_freq', type=int, default=1, help='evaluate frequency.')
parser.add_argument('--sync_bn', action='store_true',help='Sync BN.')
parser.add_argument('--opt_level', type=str, default="O0")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument("--local_rank", type=int, default=0)
args = parser.parse_args()
if args.sync_bn:
import apex
import apex.amp as amp
on_main = True
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
def print_func(data: dict, prefix: str= ''):
for k, v in data.items():
if isinstance(v, dict):
print_func(v, prefix + '.' + k)
elif isinstance(v, list):
print(prefix+'.'+k, v)
else:
print(prefix+'.'+k, v.shape)
def main(args, model:nn.Module, optimizer, train_loader, val_loader):
milestones = list(map(lambda x: int(x) * len(train_loader), args.lr_idx.split(':')[0].split(',')))
gamma = float(args.lr_idx.split(':')[1])
scheduler = get_step_schedule_with_warmup(optimizer=optimizer, milestones=milestones, gamma=gamma)
loss_weights = list(map(float, args.loss_weights.split(',')))
for ep in range(args.epochs):
model.train()
for batch_idx, sample in enumerate(train_loader):
tic = time.time()
sample_cuda = dict2cuda(sample)
# print_func(sample_cuda)
optimizer.zero_grad()
outputs = model(sample_cuda["imgs"], sample_cuda["proj_matrices"], sample_cuda["depth_values"])
# print_func(outputs)
loss = multi_stage_loss(outputs, sample_cuda["depth_labels"], sample_cuda["masks"], loss_weights)
if is_distributed and args.sync_bn:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
scheduler.step()
log_index = (len(train_loader)+len(val_loader)) * ep + batch_idx
if log_index % args.log_freq == 0:
image_summary, scalar_summary = collect_summary(sample_cuda, outputs)
if on_main:
add_summary(image_summary, 'image', logger, index=log_index, flag='train')
add_summary(scalar_summary, 'scalar', logger, index=log_index, flag='train')
print("Epoch {}/{}, Iter {}/{}, lr {:.6f}, train loss {:.2f}, eval 4mm ({:.2f}, {:.2f}), time = {:.2f}".format(
ep+1, args.epochs, batch_idx+1, len(train_loader),
optimizer.param_groups[0]["lr"], loss,
scalar_summary["4mm_abs"], scalar_summary["4mm_acc"],
time.time() - tic))
del scalar_summary, image_summary
gc.collect()
if on_main and (ep + 1) % args.save_freq == 0:
torch.save({"epoch": ep+1,
"model": model.module.state_dict(),
"optimizer": optimizer.state_dict()},
"{}/model_{:06d}.ckpt".format(args.save_path, ep+1))
if (ep + 1) % args.eval_freq == 0 or (ep+1) == args.epochs:
with torch.no_grad():
test(args, model, val_loader, ep)
def test(args, model, test_loader, epoch):
model.eval()
avg_scalars = DictAverageMeter()
for batch_idx, sample in enumerate(test_loader):
sample_cuda = dict2cuda(sample)
outputs = model(sample_cuda["imgs"], sample_cuda["proj_matrices"], sample_cuda["depth_values"])
image_summary, scalar_summary = collect_summary(sample_cuda, outputs)
avg_scalars.update(scalar_summary)
log_index = len(train_loader) * (epoch + 1) + len(val_loader) * epoch + batch_idx
if log_index % args.log_freq == 0 and on_main:
add_summary(image_summary, 'image', logger, index=log_index, flag='val')
add_summary(scalar_summary, 'scalar', logger, index=log_index, flag='val')
del scalar_summary, image_summary
if on_main:
print("Epoch {}/{}: {}".format(epoch + 1, args.epochs, avg_scalars.mean()))
add_summary(avg_scalars.mean(), 'scalar', logger, index=epoch + 1, flag='brief')
gc.collect()
def collect_summary(inputs, outputs):
depth = outputs["stage3"]["depth"]
label = inputs["depth_labels"]["stage3"]
mask = inputs["masks"]["stage3"].bool()
err_map = torch.abs(label - depth) * mask.float()
rgb = inputs["imgs"][:, 0]
image_summary = {"depth": depth,
"label": label,
"mask": mask,
"error": err_map,
"ref_view": rgb
}
scalar_summary = {}
for thresh in [2, 3, 4, 20]:
abs_err, acc = evaluate(depth, mask, label, thresh)
scalar_summary["{}mm_abs".format(thresh)] = abs_err
scalar_summary["{}mm_acc".format(thresh)] = acc
scalar_summary = reduce_tensors(scalar_summary)
return dict2numpy(image_summary), dict2float(scalar_summary)
def distribute_model(args):
def sync():
if not dist.is_available():
return
if not dist.is_initialized():
return
if dist.get_world_size() == 1:
return
dist.barrier()
if is_distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
sync()
model: torch.nn.Module = UCSNet(stage_configs=list(map(int, args.net_configs.split(","))),
lamb=args.lamb)
model.to(torch.device("cuda"))
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, betas=(0.9, 0.999),
weight_decay=args.wd)
train_set = MVSTrainSet(root_dir=args.root_path, data_list=args.train_list, num_views=args.num_views)
val_set = MVSTrainSet(root_dir=args.root_path, data_list=args.val_list, num_views=args.num_views)
if is_distributed:
if args.sync_bn:
model = apex.parallel.convert_syncbn_model(model)
model, optimizer = amp.initialize(model, optimizer, opt_level=args.opt_level, )
print('Convert BN to Sync_BN successful.')
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank,)
train_sampler = torch.utils.data.DistributedSampler(train_set, num_replicas=dist.get_world_size(),
rank=dist.get_rank())
val_sampler = torch.utils.data.DistributedSampler(val_set, num_replicas=dist.get_world_size(),
rank=dist.get_rank())
else:
model = nn.DataParallel(model)
train_sampler, val_sampler = None, None
train_loader = DataLoader(train_set, args.batch_size, sampler=train_sampler, num_workers=1,
drop_last=True, shuffle=not is_distributed)
val_loader = DataLoader(val_set, args.batch_size, sampler=val_sampler, num_workers=1,
drop_last=False, shuffle=False)
return model, optimizer, train_loader, val_loader
def multi_stage_loss(outputs, labels, masks, weights):
tot_loss = 0.
for stage_id in range(3):
depth_i = outputs["stage{}".format(stage_id+1)]["depth"]
label_i = labels["stage{}".format(stage_id+1)]
mask_i = masks["stage{}".format(stage_id+1)].bool()
depth_loss = F.smooth_l1_loss(depth_i[mask_i], label_i[mask_i], reduction='mean')
tot_loss += depth_loss * weights[stage_id]
return tot_loss
if __name__ == '__main__':
model, optimizer, train_loader, val_loader = distribute_model(args)
on_main = (not is_distributed) or (dist.get_rank() == 0)
if on_main:
mkdir_p(args.save_path)
logger = SummaryWriter(args.save_path)
print(args)
main(args=args, model=model, optimizer=optimizer, train_loader=train_loader, val_loader=val_loader)