-
Notifications
You must be signed in to change notification settings - Fork 54.9k
/
Copy pathftrace.txt
3220 lines (2589 loc) · 119 KB
/
ftrace.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
ftrace - Function Tracer
========================
Copyright 2008 Red Hat Inc.
Author: Steven Rostedt <srostedt@redhat.com>
License: The GNU Free Documentation License, Version 1.2
(dual licensed under the GPL v2)
Original Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton,
John Kacur, and David Teigland.
Written for: 2.6.28-rc2
Updated for: 3.10
Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
Introduction
------------
Ftrace is an internal tracer designed to help out developers and
designers of systems to find what is going on inside the kernel.
It can be used for debugging or analyzing latencies and
performance issues that take place outside of user-space.
Although ftrace is typically considered the function tracer, it
is really a frame work of several assorted tracing utilities.
There's latency tracing to examine what occurs between interrupts
disabled and enabled, as well as for preemption and from a time
a task is woken to the task is actually scheduled in.
One of the most common uses of ftrace is the event tracing.
Through out the kernel is hundreds of static event points that
can be enabled via the tracefs file system to see what is
going on in certain parts of the kernel.
See events.txt for more information.
Implementation Details
----------------------
See ftrace-design.txt for details for arch porters and such.
The File System
---------------
Ftrace uses the tracefs file system to hold the control files as
well as the files to display output.
When tracefs is configured into the kernel (which selecting any ftrace
option will do) the directory /sys/kernel/tracing will be created. To mount
this directory, you can add to your /etc/fstab file:
tracefs /sys/kernel/tracing tracefs defaults 0 0
Or you can mount it at run time with:
mount -t tracefs nodev /sys/kernel/tracing
For quicker access to that directory you may want to make a soft link to
it:
ln -s /sys/kernel/tracing /tracing
*** NOTICE ***
Before 4.1, all ftrace tracing control files were within the debugfs
file system, which is typically located at /sys/kernel/debug/tracing.
For backward compatibility, when mounting the debugfs file system,
the tracefs file system will be automatically mounted at:
/sys/kernel/debug/tracing
All files located in the tracefs file system will be located in that
debugfs file system directory as well.
*** NOTICE ***
Any selected ftrace option will also create the tracefs file system.
The rest of the document will assume that you are in the ftrace directory
(cd /sys/kernel/tracing) and will only concentrate on the files within that
directory and not distract from the content with the extended
"/sys/kernel/tracing" path name.
That's it! (assuming that you have ftrace configured into your kernel)
After mounting tracefs you will have access to the control and output files
of ftrace. Here is a list of some of the key files:
Note: all time values are in microseconds.
current_tracer:
This is used to set or display the current tracer
that is configured.
available_tracers:
This holds the different types of tracers that
have been compiled into the kernel. The
tracers listed here can be configured by
echoing their name into current_tracer.
tracing_on:
This sets or displays whether writing to the trace
ring buffer is enabled. Echo 0 into this file to disable
the tracer or 1 to enable it. Note, this only disables
writing to the ring buffer, the tracing overhead may
still be occurring.
The kernel function tracing_off() can be used within the
kernel to disable writing to the ring buffer, which will
set this file to "0". User space can re-enable tracing by
echoing "1" into the file.
Note, the function and event trigger "traceoff" will also
set this file to zero and stop tracing. Which can also
be re-enabled by user space using this file.
trace:
This file holds the output of the trace in a human
readable format (described below). Note, tracing is temporarily
disabled while this file is being read (opened).
trace_pipe:
The output is the same as the "trace" file but this
file is meant to be streamed with live tracing.
Reads from this file will block until new data is
retrieved. Unlike the "trace" file, this file is a
consumer. This means reading from this file causes
sequential reads to display more current data. Once
data is read from this file, it is consumed, and
will not be read again with a sequential read. The
"trace" file is static, and if the tracer is not
adding more data, it will display the same
information every time it is read. This file will not
disable tracing while being read.
trace_options:
This file lets the user control the amount of data
that is displayed in one of the above output
files. Options also exist to modify how a tracer
or events work (stack traces, timestamps, etc).
options:
This is a directory that has a file for every available
trace option (also in trace_options). Options may also be set
or cleared by writing a "1" or "0" respectively into the
corresponding file with the option name.
tracing_max_latency:
Some of the tracers record the max latency.
For example, the maximum time that interrupts are disabled.
The maximum time is saved in this file. The max trace will also be
stored, and displayed by "trace". A new max trace will only be
recorded if the latency is greater than the value in this file
(in microseconds).
By echoing in a time into this file, no latency will be recorded
unless it is greater than the time in this file.
tracing_thresh:
Some latency tracers will record a trace whenever the
latency is greater than the number in this file.
Only active when the file contains a number greater than 0.
(in microseconds)
buffer_size_kb:
This sets or displays the number of kilobytes each CPU
buffer holds. By default, the trace buffers are the same size
for each CPU. The displayed number is the size of the
CPU buffer and not total size of all buffers. The
trace buffers are allocated in pages (blocks of memory
that the kernel uses for allocation, usually 4 KB in size).
If the last page allocated has room for more bytes
than requested, the rest of the page will be used,
making the actual allocation bigger than requested or shown.
( Note, the size may not be a multiple of the page size
due to buffer management meta-data. )
Buffer sizes for individual CPUs may vary
(see "per_cpu/cpu0/buffer_size_kb" below), and if they do
this file will show "X".
buffer_total_size_kb:
This displays the total combined size of all the trace buffers.
free_buffer:
If a process is performing tracing, and the ring buffer should be
shrunk "freed" when the process is finished, even if it were to be
killed by a signal, this file can be used for that purpose. On close
of this file, the ring buffer will be resized to its minimum size.
Having a process that is tracing also open this file, when the process
exits its file descriptor for this file will be closed, and in doing so,
the ring buffer will be "freed".
It may also stop tracing if disable_on_free option is set.
tracing_cpumask:
This is a mask that lets the user only trace on specified CPUs.
The format is a hex string representing the CPUs.
set_ftrace_filter:
When dynamic ftrace is configured in (see the
section below "dynamic ftrace"), the code is dynamically
modified (code text rewrite) to disable calling of the
function profiler (mcount). This lets tracing be configured
in with practically no overhead in performance. This also
has a side effect of enabling or disabling specific functions
to be traced. Echoing names of functions into this file
will limit the trace to only those functions.
The functions listed in "available_filter_functions" are what
can be written into this file.
This interface also allows for commands to be used. See the
"Filter commands" section for more details.
set_ftrace_notrace:
This has an effect opposite to that of
set_ftrace_filter. Any function that is added here will not
be traced. If a function exists in both set_ftrace_filter
and set_ftrace_notrace, the function will _not_ be traced.
set_ftrace_pid:
Have the function tracer only trace the threads whose PID are
listed in this file.
If the "function-fork" option is set, then when a task whose
PID is listed in this file forks, the child's PID will
automatically be added to this file, and the child will be
traced by the function tracer as well. This option will also
cause PIDs of tasks that exit to be removed from the file.
set_event_pid:
Have the events only trace a task with a PID listed in this file.
Note, sched_switch and sched_wake_up will also trace events
listed in this file.
To have the PIDs of children of tasks with their PID in this file
added on fork, enable the "event-fork" option. That option will also
cause the PIDs of tasks to be removed from this file when the task
exits.
set_graph_function:
Functions listed in this file will cause the function graph
tracer to only trace these functions and the functions that
they call. (See the section "dynamic ftrace" for more details).
set_graph_notrace:
Similar to set_graph_function, but will disable function graph
tracing when the function is hit until it exits the function.
This makes it possible to ignore tracing functions that are called
by a specific function.
available_filter_functions:
This lists the functions that ftrace has processed and can trace.
These are the function names that you can pass to
"set_ftrace_filter" or "set_ftrace_notrace".
(See the section "dynamic ftrace" below for more details.)
dyn_ftrace_total_info:
This file is for debugging purposes. The number of functions that
have been converted to nops and are available to be traced.
enabled_functions:
This file is more for debugging ftrace, but can also be useful
in seeing if any function has a callback attached to it.
Not only does the trace infrastructure use ftrace function
trace utility, but other subsystems might too. This file
displays all functions that have a callback attached to them
as well as the number of callbacks that have been attached.
Note, a callback may also call multiple functions which will
not be listed in this count.
If the callback registered to be traced by a function with
the "save regs" attribute (thus even more overhead), a 'R'
will be displayed on the same line as the function that
is returning registers.
If the callback registered to be traced by a function with
the "ip modify" attribute (thus the regs->ip can be changed),
an 'I' will be displayed on the same line as the function that
can be overridden.
If the architecture supports it, it will also show what callback
is being directly called by the function. If the count is greater
than 1 it most likely will be ftrace_ops_list_func().
If the callback of the function jumps to a trampoline that is
specific to a the callback and not the standard trampoline,
its address will be printed as well as the function that the
trampoline calls.
function_profile_enabled:
When set it will enable all functions with either the function
tracer, or if configured, the function graph tracer. It will
keep a histogram of the number of functions that were called
and if the function graph tracer was configured, it will also keep
track of the time spent in those functions. The histogram
content can be displayed in the files:
trace_stats/function<cpu> ( function0, function1, etc).
trace_stats:
A directory that holds different tracing stats.
kprobe_events:
Enable dynamic trace points. See kprobetrace.txt.
kprobe_profile:
Dynamic trace points stats. See kprobetrace.txt.
max_graph_depth:
Used with the function graph tracer. This is the max depth
it will trace into a function. Setting this to a value of
one will show only the first kernel function that is called
from user space.
printk_formats:
This is for tools that read the raw format files. If an event in
the ring buffer references a string, only a pointer to the string
is recorded into the buffer and not the string itself. This prevents
tools from knowing what that string was. This file displays the string
and address for the string allowing tools to map the pointers to what
the strings were.
saved_cmdlines:
Only the pid of the task is recorded in a trace event unless
the event specifically saves the task comm as well. Ftrace
makes a cache of pid mappings to comms to try to display
comms for events. If a pid for a comm is not listed, then
"<...>" is displayed in the output.
If the option "record-cmd" is set to "0", then comms of tasks
will not be saved during recording. By default, it is enabled.
saved_cmdlines_size:
By default, 128 comms are saved (see "saved_cmdlines" above). To
increase or decrease the amount of comms that are cached, echo
in a the number of comms to cache, into this file.
saved_tgids:
If the option "record-tgid" is set, on each scheduling context switch
the Task Group ID of a task is saved in a table mapping the PID of
the thread to its TGID. By default, the "record-tgid" option is
disabled.
snapshot:
This displays the "snapshot" buffer and also lets the user
take a snapshot of the current running trace.
See the "Snapshot" section below for more details.
stack_max_size:
When the stack tracer is activated, this will display the
maximum stack size it has encountered.
See the "Stack Trace" section below.
stack_trace:
This displays the stack back trace of the largest stack
that was encountered when the stack tracer is activated.
See the "Stack Trace" section below.
stack_trace_filter:
This is similar to "set_ftrace_filter" but it limits what
functions the stack tracer will check.
trace_clock:
Whenever an event is recorded into the ring buffer, a
"timestamp" is added. This stamp comes from a specified
clock. By default, ftrace uses the "local" clock. This
clock is very fast and strictly per cpu, but on some
systems it may not be monotonic with respect to other
CPUs. In other words, the local clocks may not be in sync
with local clocks on other CPUs.
Usual clocks for tracing:
# cat trace_clock
[local] global counter x86-tsc
The clock with the square brackets around it is the one
in effect.
local: Default clock, but may not be in sync across CPUs
global: This clock is in sync with all CPUs but may
be a bit slower than the local clock.
counter: This is not a clock at all, but literally an atomic
counter. It counts up one by one, but is in sync
with all CPUs. This is useful when you need to
know exactly the order events occurred with respect to
each other on different CPUs.
uptime: This uses the jiffies counter and the time stamp
is relative to the time since boot up.
perf: This makes ftrace use the same clock that perf uses.
Eventually perf will be able to read ftrace buffers
and this will help out in interleaving the data.
x86-tsc: Architectures may define their own clocks. For
example, x86 uses its own TSC cycle clock here.
ppc-tb: This uses the powerpc timebase register value.
This is in sync across CPUs and can also be used
to correlate events across hypervisor/guest if
tb_offset is known.
mono: This uses the fast monotonic clock (CLOCK_MONOTONIC)
which is monotonic and is subject to NTP rate adjustments.
mono_raw:
This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
which is montonic but is not subject to any rate adjustments
and ticks at the same rate as the hardware clocksource.
boot: This is the boot clock (CLOCK_BOOTTIME) and is based on the
fast monotonic clock, but also accounts for time spent in
suspend. Since the clock access is designed for use in
tracing in the suspend path, some side effects are possible
if clock is accessed after the suspend time is accounted before
the fast mono clock is updated. In this case, the clock update
appears to happen slightly sooner than it normally would have.
Also on 32-bit systems, it's possible that the 64-bit boot offset
sees a partial update. These effects are rare and post
processing should be able to handle them. See comments in the
ktime_get_boot_fast_ns() function for more information.
To set a clock, simply echo the clock name into this file.
echo global > trace_clock
trace_marker:
This is a very useful file for synchronizing user space
with events happening in the kernel. Writing strings into
this file will be written into the ftrace buffer.
It is useful in applications to open this file at the start
of the application and just reference the file descriptor
for the file.
void trace_write(const char *fmt, ...)
{
va_list ap;
char buf[256];
int n;
if (trace_fd < 0)
return;
va_start(ap, fmt);
n = vsnprintf(buf, 256, fmt, ap);
va_end(ap);
write(trace_fd, buf, n);
}
start:
trace_fd = open("trace_marker", WR_ONLY);
trace_marker_raw:
This is similar to trace_marker above, but is meant for for binary data
to be written to it, where a tool can be used to parse the data
from trace_pipe_raw.
uprobe_events:
Add dynamic tracepoints in programs.
See uprobetracer.txt
uprobe_profile:
Uprobe statistics. See uprobetrace.txt
instances:
This is a way to make multiple trace buffers where different
events can be recorded in different buffers.
See "Instances" section below.
events:
This is the trace event directory. It holds event tracepoints
(also known as static tracepoints) that have been compiled
into the kernel. It shows what event tracepoints exist
and how they are grouped by system. There are "enable"
files at various levels that can enable the tracepoints
when a "1" is written to them.
See events.txt for more information.
set_event:
By echoing in the event into this file, will enable that event.
See events.txt for more information.
available_events:
A list of events that can be enabled in tracing.
See events.txt for more information.
hwlat_detector:
Directory for the Hardware Latency Detector.
See "Hardware Latency Detector" section below.
per_cpu:
This is a directory that contains the trace per_cpu information.
per_cpu/cpu0/buffer_size_kb:
The ftrace buffer is defined per_cpu. That is, there's a separate
buffer for each CPU to allow writes to be done atomically,
and free from cache bouncing. These buffers may have different
size buffers. This file is similar to the buffer_size_kb
file, but it only displays or sets the buffer size for the
specific CPU. (here cpu0).
per_cpu/cpu0/trace:
This is similar to the "trace" file, but it will only display
the data specific for the CPU. If written to, it only clears
the specific CPU buffer.
per_cpu/cpu0/trace_pipe
This is similar to the "trace_pipe" file, and is a consuming
read, but it will only display (and consume) the data specific
for the CPU.
per_cpu/cpu0/trace_pipe_raw
For tools that can parse the ftrace ring buffer binary format,
the trace_pipe_raw file can be used to extract the data
from the ring buffer directly. With the use of the splice()
system call, the buffer data can be quickly transferred to
a file or to the network where a server is collecting the
data.
Like trace_pipe, this is a consuming reader, where multiple
reads will always produce different data.
per_cpu/cpu0/snapshot:
This is similar to the main "snapshot" file, but will only
snapshot the current CPU (if supported). It only displays
the content of the snapshot for a given CPU, and if
written to, only clears this CPU buffer.
per_cpu/cpu0/snapshot_raw:
Similar to the trace_pipe_raw, but will read the binary format
from the snapshot buffer for the given CPU.
per_cpu/cpu0/stats:
This displays certain stats about the ring buffer:
entries: The number of events that are still in the buffer.
overrun: The number of lost events due to overwriting when
the buffer was full.
commit overrun: Should always be zero.
This gets set if so many events happened within a nested
event (ring buffer is re-entrant), that it fills the
buffer and starts dropping events.
bytes: Bytes actually read (not overwritten).
oldest event ts: The oldest timestamp in the buffer
now ts: The current timestamp
dropped events: Events lost due to overwrite option being off.
read events: The number of events read.
The Tracers
-----------
Here is the list of current tracers that may be configured.
"function"
Function call tracer to trace all kernel functions.
"function_graph"
Similar to the function tracer except that the
function tracer probes the functions on their entry
whereas the function graph tracer traces on both entry
and exit of the functions. It then provides the ability
to draw a graph of function calls similar to C code
source.
"blk"
The block tracer. The tracer used by the blktrace user
application.
"hwlat"
The Hardware Latency tracer is used to detect if the hardware
produces any latency. See "Hardware Latency Detector" section
below.
"irqsoff"
Traces the areas that disable interrupts and saves
the trace with the longest max latency.
See tracing_max_latency. When a new max is recorded,
it replaces the old trace. It is best to view this
trace with the latency-format option enabled, which
happens automatically when the tracer is selected.
"preemptoff"
Similar to irqsoff but traces and records the amount of
time for which preemption is disabled.
"preemptirqsoff"
Similar to irqsoff and preemptoff, but traces and
records the largest time for which irqs and/or preemption
is disabled.
"wakeup"
Traces and records the max latency that it takes for
the highest priority task to get scheduled after
it has been woken up.
Traces all tasks as an average developer would expect.
"wakeup_rt"
Traces and records the max latency that it takes for just
RT tasks (as the current "wakeup" does). This is useful
for those interested in wake up timings of RT tasks.
"wakeup_dl"
Traces and records the max latency that it takes for
a SCHED_DEADLINE task to be woken (as the "wakeup" and
"wakeup_rt" does).
"mmiotrace"
A special tracer that is used to trace binary module.
It will trace all the calls that a module makes to the
hardware. Everything it writes and reads from the I/O
as well.
"branch"
This tracer can be configured when tracing likely/unlikely
calls within the kernel. It will trace when a likely and
unlikely branch is hit and if it was correct in its prediction
of being correct.
"nop"
This is the "trace nothing" tracer. To remove all
tracers from tracing simply echo "nop" into
current_tracer.
Examples of using the tracer
----------------------------
Here are typical examples of using the tracers when controlling
them only with the tracefs interface (without using any
user-land utilities).
Output format:
--------------
Here is an example of the output format of the file "trace"
--------
# tracer: function
#
# entries-in-buffer/entries-written: 140080/250280 #P:4
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |
bash-1977 [000] .... 17284.993652: sys_close <-system_call_fastpath
bash-1977 [000] .... 17284.993653: __close_fd <-sys_close
bash-1977 [000] .... 17284.993653: _raw_spin_lock <-__close_fd
sshd-1974 [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
bash-1977 [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
bash-1977 [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
bash-1977 [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
bash-1977 [000] .... 17284.993657: filp_close <-__close_fd
bash-1977 [000] .... 17284.993657: dnotify_flush <-filp_close
sshd-1974 [003] .... 17284.993658: sys_select <-system_call_fastpath
--------
A header is printed with the tracer name that is represented by
the trace. In this case the tracer is "function". Then it shows the
number of events in the buffer as well as the total number of entries
that were written. The difference is the number of entries that were
lost due to the buffer filling up (250280 - 140080 = 110200 events
lost).
The header explains the content of the events. Task name "bash", the task
PID "1977", the CPU that it was running on "000", the latency format
(explained below), the timestamp in <secs>.<usecs> format, the
function name that was traced "sys_close" and the parent function that
called this function "system_call_fastpath". The timestamp is the time
at which the function was entered.
Latency trace format
--------------------
When the latency-format option is enabled or when one of the latency
tracers is set, the trace file gives somewhat more information to see
why a latency happened. Here is a typical trace.
# tracer: irqsoff
#
# irqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
# -----------------
# | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
# -----------------
# => started at: __lock_task_sighand
# => ended at: _raw_spin_unlock_irqrestore
#
#
# _------=> CPU#
# / _-----=> irqs-off
# | / _----=> need-resched
# || / _---=> hardirq/softirq
# ||| / _--=> preempt-depth
# |||| / delay
# cmd pid ||||| time | caller
# \ / ||||| \ | /
ps-6143 2d... 0us!: trace_hardirqs_off <-__lock_task_sighand
ps-6143 2d..1 259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
ps-6143 2d..1 263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
ps-6143 2d..1 306us : <stack trace>
=> trace_hardirqs_on_caller
=> trace_hardirqs_on
=> _raw_spin_unlock_irqrestore
=> do_task_stat
=> proc_tgid_stat
=> proc_single_show
=> seq_read
=> vfs_read
=> sys_read
=> system_call_fastpath
This shows that the current tracer is "irqsoff" tracing the time
for which interrupts were disabled. It gives the trace version (which
never changes) and the version of the kernel upon which this was executed on
(3.8). Then it displays the max latency in microseconds (259 us). The number
of trace entries displayed and the total number (both are four: #4/4).
VP, KP, SP, and HP are always zero and are reserved for later use.
#P is the number of online CPUs (#P:4).
The task is the process that was running when the latency
occurred. (ps pid: 6143).
The start and stop (the functions in which the interrupts were
disabled and enabled respectively) that caused the latencies:
__lock_task_sighand is where the interrupts were disabled.
_raw_spin_unlock_irqrestore is where they were enabled again.
The next lines after the header are the trace itself. The header
explains which is which.
cmd: The name of the process in the trace.
pid: The PID of that process.
CPU#: The CPU which the process was running on.
irqs-off: 'd' interrupts are disabled. '.' otherwise.
Note: If the architecture does not support a way to
read the irq flags variable, an 'X' will always
be printed here.
need-resched:
'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
'n' only TIF_NEED_RESCHED is set,
'p' only PREEMPT_NEED_RESCHED is set,
'.' otherwise.
hardirq/softirq:
'Z' - NMI occurred inside a hardirq
'z' - NMI is running
'H' - hard irq occurred inside a softirq.
'h' - hard irq is running
's' - soft irq is running
'.' - normal context.
preempt-depth: The level of preempt_disabled
The above is mostly meaningful for kernel developers.
time: When the latency-format option is enabled, the trace file
output includes a timestamp relative to the start of the
trace. This differs from the output when latency-format
is disabled, which includes an absolute timestamp.
delay: This is just to help catch your eye a bit better. And
needs to be fixed to be only relative to the same CPU.
The marks are determined by the difference between this
current trace and the next trace.
'$' - greater than 1 second
'@' - greater than 100 milisecond
'*' - greater than 10 milisecond
'#' - greater than 1000 microsecond
'!' - greater than 100 microsecond
'+' - greater than 10 microsecond
' ' - less than or equal to 10 microsecond.
The rest is the same as the 'trace' file.
Note, the latency tracers will usually end with a back trace
to easily find where the latency occurred.
trace_options
-------------
The trace_options file (or the options directory) is used to control
what gets printed in the trace output, or manipulate the tracers.
To see what is available, simply cat the file:
cat trace_options
print-parent
nosym-offset
nosym-addr
noverbose
noraw
nohex
nobin
noblock
trace_printk
annotate
nouserstacktrace
nosym-userobj
noprintk-msg-only
context-info
nolatency-format
record-cmd
norecord-tgid
overwrite
nodisable_on_free
irq-info
markers
noevent-fork
function-trace
nofunction-fork
nodisplay-graph
nostacktrace
nobranch
To disable one of the options, echo in the option prepended with
"no".
echo noprint-parent > trace_options
To enable an option, leave off the "no".
echo sym-offset > trace_options
Here are the available options:
print-parent - On function traces, display the calling (parent)
function as well as the function being traced.
print-parent:
bash-4000 [01] 1477.606694: simple_strtoul <-kstrtoul
noprint-parent:
bash-4000 [01] 1477.606694: simple_strtoul
sym-offset - Display not only the function name, but also the
offset in the function. For example, instead of
seeing just "ktime_get", you will see
"ktime_get+0xb/0x20".
sym-offset:
bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0
sym-addr - this will also display the function address as well
as the function name.
sym-addr:
bash-4000 [01] 1477.606694: simple_strtoul <c0339346>
verbose - This deals with the trace file when the
latency-format option is enabled.
bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
(+0.000ms): simple_strtoul (kstrtoul)
raw - This will display raw numbers. This option is best for
use with user applications that can translate the raw
numbers better than having it done in the kernel.
hex - Similar to raw, but the numbers will be in a hexadecimal
format.
bin - This will print out the formats in raw binary.
block - When set, reading trace_pipe will not block when polled.
trace_printk - Can disable trace_printk() from writing into the buffer.
annotate - It is sometimes confusing when the CPU buffers are full
and one CPU buffer had a lot of events recently, thus
a shorter time frame, were another CPU may have only had
a few events, which lets it have older events. When
the trace is reported, it shows the oldest events first,
and it may look like only one CPU ran (the one with the
oldest events). When the annotate option is set, it will
display when a new CPU buffer started:
<idle>-0 [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
<idle>-0 [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
<idle>-0 [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
##### CPU 2 buffer started ####
<idle>-0 [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
<idle>-0 [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
<idle>-0 [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
userstacktrace - This option changes the trace. It records a
stacktrace of the current user space thread after
each trace event.
sym-userobj - when user stacktrace are enabled, look up which
object the address belongs to, and print a
relative address. This is especially useful when
ASLR is on, otherwise you don't get a chance to
resolve the address to object/file/line after
the app is no longer running
The lookup is performed when you read
trace,trace_pipe. Example:
a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
printk-msg-only - When set, trace_printk()s will only show the format
and not their parameters (if trace_bprintk() or
trace_bputs() was used to save the trace_printk()).