-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
79 lines (64 loc) · 2.15 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import shutil
from omegaconf import OmegaConf
from utils.parser import parse_arguments
from utils.training import train_single, train_loso
from utils.gen_ir_examples import gen_examples
def main(args):
# Load config & initialize wandb
config = OmegaConf.load(args.config)
os.makedirs("./trained_models/", exist_ok=True)
name = args.config.split("/")[-1].split(".")[0]
save_dir = (
f"./trained_models/{config.data.dir.split('/')[-1]}/{config.model.name}/{name}"
+ ("/loso" if args.train_loso else "")
)
if name == "config":
save_dir = f"./trained_models/debug" + ("/loso" if args.train_loso else "")
if os.path.exists(save_dir) and not args.train_loso and not args.test:
shutil.rmtree(save_dir)
os.makedirs(save_dir, exist_ok=True)
print(f"Saving to {save_dir}")
if not args.test:
OmegaConf.save(config, os.path.join(save_dir, "config.yaml"))
if args.train_loso is True:
(
loss,
f1,
acc,
dev_loss,
dev_f1,
dev_acc,
max_f1,
max_val_f1,
min_f1,
min_val_f1,
) = train_loso(args, config, save_dir)
else:
loss, f1, acc, dev_loss, dev_f1, dev_acc = train_single(
None, None, args, config, save_dir
)
with open(os.path.join(save_dir, "results.txt"), "w") as f:
f.write(f"Model: {name} test set results: \n")
f.write(f"Loss: {loss}\n")
f.write(f"F1: {f1}\n")
f.write(f"Acc: {acc}\n")
f.write(f"Dev Loss: {dev_loss}\n")
f.write(f"Dev F1: {dev_f1}\n")
f.write(f"Dev Acc: {dev_acc}\n")
if args.train_loso:
f.write(f"Max F1: {max_f1}\n")
f.write(f"Max Val F1: {max_val_f1}\n")
f.write(f"Min F1: {min_f1}\n")
f.write(f"Min Val F1: {min_val_f1}\n")
f.close()
print(f"Done! Model saved to {save_dir}")
print(f"Loss: {loss}")
print(f"F1: {f1}")
print(f"Acc: {acc}")
if __name__ == "__main__":
args = parse_arguments()
if args.gen_examples:
gen_examples()
else:
main(args)