From aa08765c64d6d9c9d93d2a3d1eb572ddf60682e4 Mon Sep 17 00:00:00 2001 From: <> Date: Fri, 26 Jan 2024 16:08:59 +0000 Subject: [PATCH] Deployed 5094a82 with MkDocs version: 1.5.3 --- .nojekyll | 0 404.html | 1725 +++++ api/SUMMARY/index.html | 1802 +++++ api/rul_adapt/approach/abstract/index.html | 2099 ++++++ api/rul_adapt/approach/adarul/index.html | 2595 +++++++ api/rul_adapt/approach/cnn_dann/index.html | 1931 +++++ api/rul_adapt/approach/conditional/index.html | 3178 ++++++++ api/rul_adapt/approach/consistency/index.html | 2763 +++++++ api/rul_adapt/approach/dann/index.html | 2597 +++++++ api/rul_adapt/approach/evaluation/index.html | 1847 +++++ api/rul_adapt/approach/index.html | 1802 +++++ .../approach/latent_align/index.html | 3459 +++++++++ api/rul_adapt/approach/mmd/index.html | 2464 ++++++ .../approach/pseudo_labels/index.html | 2158 ++++++ api/rul_adapt/approach/supervised/index.html | 2338 ++++++ api/rul_adapt/approach/tbigru/index.html | 2597 +++++++ .../construct/adarul/functional/index.html | 2156 ++++++ api/rul_adapt/construct/adarul/index.html | 1804 +++++ .../construct/cnn_dann/functional/index.html | 2132 ++++++ api/rul_adapt/construct/cnn_dann/index.html | 1804 +++++ .../consistency/functional/index.html | 2184 ++++++ .../construct/consistency/index.html | 1804 +++++ api/rul_adapt/construct/index.html | 1802 +++++ .../latent_align/functional/index.html | 2188 ++++++ .../construct/latent_align/index.html | 1804 +++++ .../construct/lstm_dann/functional/index.html | 2127 ++++++ api/rul_adapt/construct/lstm_dann/index.html | 1804 +++++ .../construct/tbigru/functional/index.html | 2127 ++++++ api/rul_adapt/construct/tbigru/index.html | 1804 +++++ api/rul_adapt/loss/adaption/index.html | 2703 +++++++ api/rul_adapt/loss/alignment/index.html | 2074 +++++ api/rul_adapt/loss/conditional/index.html | 2195 ++++++ api/rul_adapt/loss/index.html | 1802 +++++ api/rul_adapt/loss/rul/index.html | 1847 +++++ api/rul_adapt/loss/utils/index.html | 1847 +++++ api/rul_adapt/model/cnn/index.html | 2193 ++++++ api/rul_adapt/model/head/index.html | 2084 +++++ api/rul_adapt/model/index.html | 1826 +++++ api/rul_adapt/model/rnn/index.html | 2302 ++++++ api/rul_adapt/model/two_stage/index.html | 2061 +++++ api/rul_adapt/model/wrapper/index.html | 1847 +++++ api/rul_adapt/utils/index.html | 2235 ++++++ assets/_mkdocstrings.css | 109 + assets/images/favicon.png | Bin 0 -> 1870 bytes assets/javascripts/bundle.d7c377c4.min.js | 29 + assets/javascripts/bundle.d7c377c4.min.js.map | 7 + assets/javascripts/lunr/min/lunr.ar.min.js | 1 + assets/javascripts/lunr/min/lunr.da.min.js | 18 + assets/javascripts/lunr/min/lunr.de.min.js | 18 + assets/javascripts/lunr/min/lunr.du.min.js | 18 + assets/javascripts/lunr/min/lunr.el.min.js | 1 + assets/javascripts/lunr/min/lunr.es.min.js | 18 + assets/javascripts/lunr/min/lunr.fi.min.js | 18 + assets/javascripts/lunr/min/lunr.fr.min.js | 18 + assets/javascripts/lunr/min/lunr.he.min.js | 1 + assets/javascripts/lunr/min/lunr.hi.min.js | 1 + assets/javascripts/lunr/min/lunr.hu.min.js | 18 + assets/javascripts/lunr/min/lunr.hy.min.js | 1 + assets/javascripts/lunr/min/lunr.it.min.js | 18 + assets/javascripts/lunr/min/lunr.ja.min.js | 1 + assets/javascripts/lunr/min/lunr.jp.min.js | 1 + assets/javascripts/lunr/min/lunr.kn.min.js | 1 + assets/javascripts/lunr/min/lunr.ko.min.js | 1 + assets/javascripts/lunr/min/lunr.multi.min.js | 1 + assets/javascripts/lunr/min/lunr.nl.min.js | 18 + assets/javascripts/lunr/min/lunr.no.min.js | 18 + assets/javascripts/lunr/min/lunr.pt.min.js | 18 + assets/javascripts/lunr/min/lunr.ro.min.js | 18 + assets/javascripts/lunr/min/lunr.ru.min.js | 18 + assets/javascripts/lunr/min/lunr.sa.min.js | 1 + .../lunr/min/lunr.stemmer.support.min.js | 1 + assets/javascripts/lunr/min/lunr.sv.min.js | 18 + assets/javascripts/lunr/min/lunr.ta.min.js | 1 + assets/javascripts/lunr/min/lunr.te.min.js | 1 + assets/javascripts/lunr/min/lunr.th.min.js | 1 + assets/javascripts/lunr/min/lunr.tr.min.js | 18 + assets/javascripts/lunr/min/lunr.vi.min.js | 1 + assets/javascripts/lunr/min/lunr.zh.min.js | 1 + assets/javascripts/lunr/tinyseg.js | 206 + assets/javascripts/lunr/wordcut.js | 6708 +++++++++++++++++ .../workers/search.f886a092.min.js | 42 + .../workers/search.f886a092.min.js.map | 7 + assets/stylesheets/main.50c56a3b.min.css | 1 + assets/stylesheets/main.50c56a3b.min.css.map | 1 + assets/stylesheets/palette.06af60db.min.css | 1 + .../stylesheets/palette.06af60db.min.css.map | 1 + examples/adarul/index.html | 2943 ++++++++ examples/cnn_dann/index.html | 2859 +++++++ examples/conditional/index.html | 2695 +++++++ examples/consistency_dann/index.html | 2926 +++++++ examples/index.html | 1762 +++++ examples/latent_align/index.html | 3197 ++++++++ examples/lstm_dann/index.html | 2856 +++++++ examples/pseudo_labels/index.html | 2869 +++++++ examples/tbigru/index.html | 3383 +++++++++ gen_ref_pages/index.html | 2357 ++++++ index.html | 1869 +++++ objects.inv | Bin 0 -> 2203 bytes search/search_index.json | 1 + sitemap.xml | 253 + sitemap.xml.gz | Bin 0 -> 515 bytes 101 files changed, 125280 insertions(+) create mode 100644 .nojekyll create mode 100644 404.html create mode 100644 api/SUMMARY/index.html create mode 100644 api/rul_adapt/approach/abstract/index.html create mode 100644 api/rul_adapt/approach/adarul/index.html create mode 100644 api/rul_adapt/approach/cnn_dann/index.html create mode 100644 api/rul_adapt/approach/conditional/index.html create mode 100644 api/rul_adapt/approach/consistency/index.html create mode 100644 api/rul_adapt/approach/dann/index.html create mode 100644 api/rul_adapt/approach/evaluation/index.html create mode 100644 api/rul_adapt/approach/index.html create mode 100644 api/rul_adapt/approach/latent_align/index.html create mode 100644 api/rul_adapt/approach/mmd/index.html create mode 100644 api/rul_adapt/approach/pseudo_labels/index.html create mode 100644 api/rul_adapt/approach/supervised/index.html create mode 100644 api/rul_adapt/approach/tbigru/index.html create mode 100644 api/rul_adapt/construct/adarul/functional/index.html create mode 100644 api/rul_adapt/construct/adarul/index.html create mode 100644 api/rul_adapt/construct/cnn_dann/functional/index.html create mode 100644 api/rul_adapt/construct/cnn_dann/index.html create mode 100644 api/rul_adapt/construct/consistency/functional/index.html create mode 100644 api/rul_adapt/construct/consistency/index.html create mode 100644 api/rul_adapt/construct/index.html create mode 100644 api/rul_adapt/construct/latent_align/functional/index.html create mode 100644 api/rul_adapt/construct/latent_align/index.html create mode 100644 api/rul_adapt/construct/lstm_dann/functional/index.html create mode 100644 api/rul_adapt/construct/lstm_dann/index.html create mode 100644 api/rul_adapt/construct/tbigru/functional/index.html create mode 100644 api/rul_adapt/construct/tbigru/index.html create mode 100644 api/rul_adapt/loss/adaption/index.html create mode 100644 api/rul_adapt/loss/alignment/index.html create mode 100644 api/rul_adapt/loss/conditional/index.html create mode 100644 api/rul_adapt/loss/index.html create mode 100644 api/rul_adapt/loss/rul/index.html create mode 100644 api/rul_adapt/loss/utils/index.html create mode 100644 api/rul_adapt/model/cnn/index.html create mode 100644 api/rul_adapt/model/head/index.html create mode 100644 api/rul_adapt/model/index.html create mode 100644 api/rul_adapt/model/rnn/index.html create mode 100644 api/rul_adapt/model/two_stage/index.html create mode 100644 api/rul_adapt/model/wrapper/index.html create mode 100644 api/rul_adapt/utils/index.html create mode 100644 assets/_mkdocstrings.css create mode 100644 assets/images/favicon.png create mode 100644 assets/javascripts/bundle.d7c377c4.min.js create mode 100644 assets/javascripts/bundle.d7c377c4.min.js.map create mode 100644 assets/javascripts/lunr/min/lunr.ar.min.js create mode 100644 assets/javascripts/lunr/min/lunr.da.min.js create mode 100644 assets/javascripts/lunr/min/lunr.de.min.js create mode 100644 assets/javascripts/lunr/min/lunr.du.min.js create mode 100644 assets/javascripts/lunr/min/lunr.el.min.js create mode 100644 assets/javascripts/lunr/min/lunr.es.min.js create mode 100644 assets/javascripts/lunr/min/lunr.fi.min.js create mode 100644 assets/javascripts/lunr/min/lunr.fr.min.js create mode 100644 assets/javascripts/lunr/min/lunr.he.min.js create mode 100644 assets/javascripts/lunr/min/lunr.hi.min.js create mode 100644 assets/javascripts/lunr/min/lunr.hu.min.js create mode 100644 assets/javascripts/lunr/min/lunr.hy.min.js create mode 100644 assets/javascripts/lunr/min/lunr.it.min.js create mode 100644 assets/javascripts/lunr/min/lunr.ja.min.js create mode 100644 assets/javascripts/lunr/min/lunr.jp.min.js create mode 100644 assets/javascripts/lunr/min/lunr.kn.min.js create mode 100644 assets/javascripts/lunr/min/lunr.ko.min.js create mode 100644 assets/javascripts/lunr/min/lunr.multi.min.js create mode 100644 assets/javascripts/lunr/min/lunr.nl.min.js create mode 100644 assets/javascripts/lunr/min/lunr.no.min.js create mode 100644 assets/javascripts/lunr/min/lunr.pt.min.js create mode 100644 assets/javascripts/lunr/min/lunr.ro.min.js create mode 100644 assets/javascripts/lunr/min/lunr.ru.min.js create mode 100644 assets/javascripts/lunr/min/lunr.sa.min.js create mode 100644 assets/javascripts/lunr/min/lunr.stemmer.support.min.js create mode 100644 assets/javascripts/lunr/min/lunr.sv.min.js create mode 100644 assets/javascripts/lunr/min/lunr.ta.min.js create mode 100644 assets/javascripts/lunr/min/lunr.te.min.js create mode 100644 assets/javascripts/lunr/min/lunr.th.min.js create mode 100644 assets/javascripts/lunr/min/lunr.tr.min.js create mode 100644 assets/javascripts/lunr/min/lunr.vi.min.js create mode 100644 assets/javascripts/lunr/min/lunr.zh.min.js create mode 100644 assets/javascripts/lunr/tinyseg.js create mode 100644 assets/javascripts/lunr/wordcut.js create mode 100644 assets/javascripts/workers/search.f886a092.min.js create mode 100644 assets/javascripts/workers/search.f886a092.min.js.map create mode 100644 assets/stylesheets/main.50c56a3b.min.css create mode 100644 assets/stylesheets/main.50c56a3b.min.css.map create mode 100644 assets/stylesheets/palette.06af60db.min.css create mode 100644 assets/stylesheets/palette.06af60db.min.css.map create mode 100644 examples/adarul/index.html create mode 100644 examples/cnn_dann/index.html create mode 100644 examples/conditional/index.html create mode 100644 examples/consistency_dann/index.html create mode 100644 examples/index.html create mode 100644 examples/latent_align/index.html create mode 100644 examples/lstm_dann/index.html create mode 100644 examples/pseudo_labels/index.html create mode 100644 examples/tbigru/index.html create mode 100644 gen_ref_pages/index.html create mode 100644 index.html create mode 100644 objects.inv create mode 100644 search/search_index.json create mode 100644 sitemap.xml create mode 100644 sitemap.xml.gz diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 00000000..e69de29b diff --git a/404.html b/404.html new file mode 100644 index 00000000..8fc39df1 --- /dev/null +++ b/404.html @@ -0,0 +1,1725 @@ + + + + + + + + + + + + + + + + + + + RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ +

404 - Not found

+ +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/SUMMARY/index.html b/api/SUMMARY/index.html new file mode 100644 index 00000000..a7e2b35c --- /dev/null +++ b/api/SUMMARY/index.html @@ -0,0 +1,1802 @@ + + + + + + + + + + + + + + + + + + + SUMMARY - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + + + + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/approach/abstract/index.html b/api/rul_adapt/approach/abstract/index.html new file mode 100644 index 00000000..a27236e3 --- /dev/null +++ b/api/rul_adapt/approach/abstract/index.html @@ -0,0 +1,2099 @@ + + + + + + + + + + + + + + + + + + + + + + + + + abstract - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

abstract

+ +
+ + + + +
+ +

A module for the abstract base class of all approaches.

+ + + +
+ + + + + + + + +
+ + + +

+ AdaptionApproach + + +

+ + +
+

+ Bases: LightningModule

+ + +

This abstract class is the base of all adaption approaches.

+

It defines that there needs to be a feature_extractor, a regressor. These +members can be accessed via read-only properties. The feature_extractor and +regressor are trainable neural networks.

+

All child classes are supposed to implement their own constructors. The +feature_extractor and regressor should explicitly not be arguments of the +constructor and should be set by calling set_model. This way, the approach can +be initialized with all hyperparameters first and afterward supplied with the +networks. This is useful for initializing the networks with pre-trained weights.

+

Because models are constructed outside the approach, the default checkpointing +mechanism of PyTorch Lightning fails to load checkpoints of AdaptionApproaches. +We extended the checkpointing mechanism by implementing the on_save_checkpoint +and on_load_checkpoint callbacks to make it work. If a subclass uses an +additional model, besides feature extractor and regressor, that is not +initialized in the constructor, the subclass needs to implement the +CHECKPOINT_MODELS class variable. This variable is a list of model names to be +included in the checkpoint. For example, if your approach has an additional model +self._domain_disc, the CHECKPOINT_MODELS variable should be set to +['_domain_disc']. Otherwise, loading a checkpoint of this approach will fail.

+ + + + +
+ + + + + + + +
+ + + +

+ feature_extractor: nn.Module + + + property + + +

+ + +
+ +

The feature extraction network.

+
+ +
+ +
+ + + +

+ regressor: nn.Module + + + property + + +

+ + +
+ +

The RUL regression network.

+
+ +
+ + + + +
+ + + +

+ set_model(feature_extractor, regressor, *args, **kwargs) + +

+ + +
+ +

Set the feature extractor and regressor for this approach.

+

Child classes can override this function to add additional models to an +approach. The args and kwargs making this possible are ignored in this +function.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
feature_extractor + Module + +
+

The feature extraction network.

+
+
+ required +
regressor + Module + +
+

The RUL regression network.

+
+
+ required +
+ +
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/approach/adarul/index.html b/api/rul_adapt/approach/adarul/index.html new file mode 100644 index 00000000..ccbd8550 --- /dev/null +++ b/api/rul_adapt/approach/adarul/index.html @@ -0,0 +1,2595 @@ + + + + + + + + + + + + + + + + + + + + + + + + + adarul - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

adarul

+ +
+ + + + +
+ +

The Adversarial Domain Adaption for Remaining Useful Life (ADARUL) approach +pre-trains a feature extractor and regressor on the source domain in a supervised +fashion. Afterwards the feature extractor is adapted by feeding it the target +features and training it adversarial against a domain discriminator. The +discriminator is trained to distinguish the source features fed to a frozen version +of the pre-trained feature extractor and the target features fed to the adapted +feature extractor.

+

The approach was first introduced by Ragab et al. and evaluated on the CMAPSS dataset.

+ + + +
+ + + + + + + + +
+ + + +

+ AdaRulApproach + + +

+ + +
+

+ Bases: AdaptionApproach

+ + +

The ADARUL approach uses a GAN setup to adapt a feature extractor. This +approach should only be used with a pre-trained feature extractor.

+

The regressor and domain discriminator need the same number of input units as the +feature extractor has output units. The discriminator is not allowed to have an +activation function on its last layer for it to work with its loss.

+ + + +

Examples:

+
>>> from rul_adapt import model
+>>> from rul_adapt import approach
+>>> feat_ex = model.CnnExtractor(1, [16, 16, 1], 10, fc_units=16)
+>>> reg = model.FullyConnectedHead(16, [1])
+>>> disc = model.FullyConnectedHead(16, [8, 1], act_func_on_last_layer=False)
+>>> pre = approach.SupervisedApproach("mse", 125, lr=0.001)
+>>> pre.set_model(feat_ex, reg)
+>>> main = approach.AdaRulApproach(5, 1, 125, lr=0.001)
+>>> main.set_model(pre.feature_extractor, pre.regressor, disc)
+
+ + + + +
+ + + + + + + +
+ + + +

+ domain_disc + + + property + + +

+ + +
+ +

The domain discriminator network.

+
+ +
+ + + + +
+ + + +

+ __init__(num_disc_updates, num_gen_updates, max_rul=None, rul_score_mode='phm08', evaluate_degraded_only=False, **optim_kwargs) + +

+ + +
+ +

Create a new ADARUL approach.

+

The discriminator is first trained for num_disc_updates batches. +Afterward, the feature extractor (generator) is trained for +num_gen_updates. This cycle repeats until the epoch ends.

+

The regressor is supposed to output a value between [0, 1] which is then +scaled by max_rul.

+

For more information about the possible optimizer keyword arguments, +see here.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
max_rul + Optional[int] + +
+

Maximum RUL value of the training data.

+
+
+ None +
num_disc_updates + int + +
+

Number of batches to update discriminator with.

+
+
+ required +
num_gen_updates + int + +
+

Number of batches to update generator with.

+
+
+ required +
rul_score_mode + Literal['phm08', 'phm12'] + +
+

The mode for the val and test RUL score, either 'phm08' + or 'phm12'.

+
+
+ 'phm08' +
evaluate_degraded_only + bool + +
+

Whether to only evaluate the RUL score on degraded + samples.

+
+
+ False +
**optim_kwargs + Any + +
+

Keyword arguments for the optimizer, e.g. learning rate.

+
+
+ {} +
+ +
+ +
+ + +
+ + + +

+ configure_optimizers() + +

+ + +
+ +

Configure an optimizer for the generator and discriminator respectively.

+ +
+ +
+ + +
+ + + +

+ forward(inputs) + +

+ + +
+ +

Predict the RUL values for a batch of input features.

+ +
+ +
+ + +
+ + + +

+ set_model(feature_extractor, regressor, domain_disc=None, *args, **kwargs) + +

+ + +
+ +

Set the feature extractor, regressor and domain discriminator for this approach. +The discriminator is not allowed to have an activation function on its last +layer and needs to use only a single output neuron.

+

A frozen copy of the feature extractor is produced to be used for the real +samples fed to the discriminator. The feature extractor should, therefore, +be pre-trained.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
feature_extractor + Module + +
+

The feature extraction network.

+
+
+ required +
regressor + Module + +
+

The RUL regression network.

+
+
+ required +
domain_disc + Optional[Module] + +
+

The domain discriminator network.

+
+
+ None +
+ +
+ +
+ + +
+ + + +

+ test_step(batch, batch_idx, dataloader_idx) + +

+ + +
+ +

Execute one test step.

+

The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader_idx zero +are assumed to be from the source domain and for dataloader_idx one from the +target domain. The metrics are written to the configured logger under the +prefix test.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list containing a feature and a label tensor.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
dataloader_idx + int + +
+

The index of the current dataloader (0: source, 1: target).

+
+
+ required +
+ +
+ +
+ + +
+ + + +

+ training_step(batch, batch_idx) + +

+ + +
+ +

Execute one training step.

+

The batch argument is a list of three tensors representing the source +features, source labels and target features. Each iteration either only the +discriminator or only the generator is trained. The respective loss is logged.

+

The real samples are source features passed though the frozen version of +the feature extractor. The fake samples are the target features passed +through the adapted feature extractor. The discriminator predicts if a sample +came from the source or target domain.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list of a source feature, source label and target feature tensors.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
+

Returns: + Either the discriminator or generator loss.

+ +
+ +
+ + +
+ + + +

+ validation_step(batch, batch_idx, dataloader_idx) + +

+ + +
+ +

Execute one validation step.

+

The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader_idx zero +are assumed to be from the source domain and for dataloader_idx one from the +target domain. The metrics are written to the configured logger under the +prefix val.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list containing a feature and a label tensor.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
dataloader_idx + int + +
+

The index of the current dataloader (0: source, 1: target).

+
+
+ required +
+ +
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/approach/cnn_dann/index.html b/api/rul_adapt/approach/cnn_dann/index.html new file mode 100644 index 00000000..862c9b54 --- /dev/null +++ b/api/rul_adapt/approach/cnn_dann/index.html @@ -0,0 +1,1931 @@ + + + + + + + + + + + + + + + + + + + + + + + + + cnn_dann - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

cnn_dann

+ +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ init_weights(feature_extractor, regressor) + +

+ + +
+ +

Initialize the weights of the feature extractor and regressor in-place.

+

For the weight matrices the Xavier uniform initialization is used. The biases are +initialized to zero. This function works only for the networks returned by a call to +rul_adapt.construct.get_cnn_dann.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
feature_extractor + CnnExtractor + +
+

The feature extractor network to be initialized.

+
+
+ required +
regressor + DropoutPrefix + +
+

The regressor network to be initialized.

+
+
+ required +
+ +
+ +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/approach/conditional/index.html b/api/rul_adapt/approach/conditional/index.html new file mode 100644 index 00000000..60537da5 --- /dev/null +++ b/api/rul_adapt/approach/conditional/index.html @@ -0,0 +1,3178 @@ + + + + + + + + + + + + + + + + + + + + + + + + + conditional - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + + + + + +
+
+ + + + + + + +

conditional

+ +
+ + + + +
+ +

The Conditional Adaption approaches are derived from the [MMD] [ +rul_adapt.approach.mmd] and DANN approaches. They apply +their respective adaption loss not only to the whole data but also separately to +subsets of the data with a ConditionalAdaptionLoss. Fuzzy sets with rectangular +membership functions define these subsets.

+

Both variants were introduced by +Cheng et al. in 2021.

+ + + +
+ + + + + + + + +
+ + + +

+ ConditionalDannApproach + + +

+ + +
+

+ Bases: AdaptionApproach

+ + +

The conditional DANN approach uses a marginal and several conditional domain +discriminators. The features are produced by a shared feature extractor. The loss +in the domain discriminators is binary cross-entropy.

+

The regressor and domain discriminators need the same number of input units as the +feature extractor has output units. The discriminators are not allowed to have an +activation function on their last layer and need to use only a single output +neuron because BCEWithLogitsLoss is used.

+ + + +

Examples:

+
>>> from rul_adapt import model
+>>> from rul_adapt import approach
+>>> feat_ex = model.CnnExtractor(1, [16, 16, 1], 10, fc_units=16)
+>>> reg = model.FullyConnectedHead(16, [1])
+>>> disc = model.FullyConnectedHead(16, [8, 1], act_func_on_last_layer=False)
+>>> cond_dann = approach.ConditionalDannApproach(1.0, 0.5, [(0, 1)])
+>>> cond_dann.set_model(feat_ex, reg, disc)
+
+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__(dann_factor, dynamic_adaptive_factor, fuzzy_sets, loss_type='mae', rul_score_mode='phm08', evaluate_degraded_only=False, **optim_kwargs) + +

+ + +
+ +

Create a new conditional DANN approach.

+

The strength of the domain discriminator's influence on the feature extractor +is controlled by the dann_factor. The higher it is, the stronger the +influence. The dynamic_adaptive_factor controls the balance between the +marginal and conditional DANN loss.

+

The domain discriminator is set by the set_model function together with the +feature extractor and regressor. For more information, see the approach module page.

+

For more information about the possible optimizer keyword arguments, +see here.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
dann_factor + float + +
+

Strength of the domain DANN loss.

+
+
+ required +
dynamic_adaptive_factor + float + +
+

Balance between the marginal and conditional DANN + loss.

+
+
+ required +
fuzzy_sets + List[Tuple[float, float]] + +
+

Fuzzy sets for the conditional DANN loss.

+
+
+ required +
loss_type + Literal['mse', 'rmse', 'mae'] + +
+

The type of regression loss, either 'mse', 'rmse' or 'mae'.

+
+
+ 'mae' +
rul_score_mode + Literal['phm08', 'phm12'] + +
+

The mode for the val and test RUL score, either 'phm08' + or 'phm12'.

+
+
+ 'phm08' +
**optim_kwargs + Any + +
+

Keyword arguments for the optimizer, e.g. learning rate.

+
+
+ {} +
+ +
+ +
+ + +
+ + + +

+ configure_optimizers() + +

+ + +
+ +

Configure an Adam optimizer.

+ +
+ +
+ + +
+ + + +

+ forward(inputs) + +

+ + +
+ +

Predict the RUL values for a batch of input features.

+ +
+ +
+ + +
+ + + +

+ set_model(feature_extractor, regressor, domain_disc=None, *args, **kwargs) + +

+ + +
+ +

Set the feature extractor, regressor, and domain discriminator for this +approach.

+

The discriminator is not allowed to have an activation function on its last +layer and needs to use only a single output neuron. +It is wrapped by a +DomainAdversarialLoss.

+

A copy of the discriminator is used for each conditional loss governing a +fuzzy set.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
feature_extractor + Module + +
+

The feature extraction network.

+
+
+ required +
regressor + Module + +
+

The RUL regression network.

+
+
+ required +
domain_disc + Optional[Module] + +
+

The domain discriminator network. + Copied for each fuzzy set.

+
+
+ None +
+ +
+ +
+ + +
+ + + +

+ test_step(batch, batch_idx, dataloader_idx) + +

+ + +
+ +

Execute one test step.

+

The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader idx zero +are assumed to be from the source domain and for dataloader idx one from the +target domain. The metrics are written to the configured logger under the +prefix test.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list containing a feature and a label tensor.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
dataloader_idx + int + +
+

The index of the current dataloader (0: source, 1: target).

+
+
+ required +
+ +
+ +
+ + +
+ + + +

+ training_step(batch, batch_idx) + +

+ + +
+ +

Execute one training step.

+

The batch argument is a list of three tensors representing the source +features, source labels and target features. Both types of features are fed +to the feature extractor. Then the regression loss for the source domain, +the MMD loss and the conditional MMD loss are computed. The +regression, MMD, conditional MMD and combined loss are logged.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list of a source feature, source label and target feature tensors.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
+

Returns: + The combined loss.

+ +
+ +
+ + +
+ + + +

+ validation_step(batch, batch_idx, dataloader_idx) + +

+ + +
+ +

Execute one validation step.

+

The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader idx zero +are assumed to be from the source domain and for dataloader idx one from the +target domain. The metrics are written to the configured logger under the +prefix val.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list containing a feature and a label tensor.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
dataloader_idx + int + +
+

The index of the current dataloader (0: source, 1: target).

+
+
+ required +
+ +
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ ConditionalMmdApproach + + +

+ + +
+

+ Bases: AdaptionApproach

+ + +

The conditional MMD uses a combination of a marginal and conditional MML loss +to adapt a feature extractor to be used with the source regressor.

+

The regressor needs the same number of input units as the feature extractor has +output units.

+ + + +

Examples:

+
>>> from rul_adapt import model
+>>> from rul_adapt import approach
+>>> feat_ex = model.CnnExtractor(1, [16, 16, 1], 10, fc_units=16)
+>>> reg = model.FullyConnectedHead(16, [1])
+>>> cond_mmd = approach.ConditionalMmdApproach(0.01, 5, 0.5, [(0, 1)])
+>>> cond_mmd.set_model(feat_ex, reg)
+
+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__(mmd_factor, num_mmd_kernels, dynamic_adaptive_factor, fuzzy_sets, loss_type='mae', rul_score_mode='phm08', evaluate_degraded_only=False, **optim_kwargs) + +

+ + +
+ +

Create a new conditional MMD approach.

+

The strength of the influence of the MMD loss on the feature extractor is +controlled by the mmd_factor. The higher it is, the stronger the influence. +The dynamic adaptive factor controls the balance between the marginal MMD and +conditional MMD losses.

+

For more information about the possible optimizer keyword arguments, +see here.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
mmd_factor + float + +
+

The strength of the MMD loss' influence.

+
+
+ required +
num_mmd_kernels + int + +
+

The number of kernels for the MMD loss.

+
+
+ required +
dynamic_adaptive_factor + float + +
+

The balance between marginal and conditional MMD.

+
+
+ required +
fuzzy_sets + List[Tuple[float, float]] + +
+

The fuzzy sets for the conditional MMD loss.

+
+
+ required +
loss_type + Literal['mse', 'rmse', 'mae'] + +
+

The type of regression loss, either 'mse', 'rmse' or 'mae'.

+
+
+ 'mae' +
rul_score_mode + Literal['phm08', 'phm12'] + +
+

The mode for the val and test RUL score, either 'phm08' + or 'phm12'.

+
+
+ 'phm08' +
evaluate_degraded_only + bool + +
+

Whether to only evaluate the RUL score on degraded + samples.

+
+
+ False +
**optim_kwargs + Any + +
+

Keyword arguments for the optimizer, e.g. learning rate.

+
+
+ {} +
+ +
+ +
+ + +
+ + + +

+ configure_optimizers() + +

+ + +
+ +

Configure an Adam optimizer.

+ +
+ +
+ + +
+ + + +

+ forward(inputs) + +

+ + +
+ +

Predict the RUL values for a batch of input features.

+ +
+ +
+ + +
+ + + +

+ test_step(batch, batch_idx, dataloader_idx) + +

+ + +
+ +

Execute one test step.

+

The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader idx zero +are assumed to be from the source domain and for dataloader idx one from the +target domain. The metrics are written to the configured logger under the +prefix test.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list containing a feature and a label tensor.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
dataloader_idx + int + +
+

The index of the current dataloader (0: source, 1: target).

+
+
+ required +
+ +
+ +
+ + +
+ + + +

+ training_step(batch, batch_idx) + +

+ + +
+ +

Execute one training step.

+

The batch argument is a list of three tensors representing the source +features, source labels and target features. Both types of features are fed +to the feature extractor. Then the regression loss for the source domain, +the MMD loss and the conditional MMD loss are computed. The +regression, MMD, conditional MMD and combined loss are logged.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list of a source feature, source label and target feature tensors.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
+

Returns: + The combined loss.

+ +
+ +
+ + +
+ + + +

+ validation_step(batch, batch_idx, dataloader_idx) + +

+ + +
+ +

Execute one validation step.

+

The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader idx zero +are assumed to be from the source domain and for dataloader idx one from the +target domain. The metrics are written to the configured logger under the +prefix val.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list containing a feature and a label tensor.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
dataloader_idx + int + +
+

The index of the current dataloader (0: source, 1: target).

+
+
+ required +
+ +
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/approach/consistency/index.html b/api/rul_adapt/approach/consistency/index.html new file mode 100644 index 00000000..fc3fcd46 --- /dev/null +++ b/api/rul_adapt/approach/consistency/index.html @@ -0,0 +1,2763 @@ + + + + + + + + + + + + + + + + + + + + + + + + + consistency - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

consistency

+ +
+ + + + +
+ +

The Consistency DANN approach uses a consistency loss in tandem with a DANN +loss. First, the network is pre-trained in a supervised +fashion on the source domain. The pre-trained weights are then used to initialize the +main training stage. The consistency loss penalizes the weights of the feature +extractor moving away from the pre-trained version. This way the feature extractor +weights stay close to the pre-trained weights.

+
# pre-training stage
+
+Source --> PreFeatEx --> Source Feats --> Regressor  --> RUL Prediction
+
+# main training stage
+
+   ------- PreTrainFeatEx --> PreTrain Source Feats --> Consistency Loss
+   |
+   |
+Source --> FeatEx --> Source Feats -----------> Regressor  --> RUL Prediction
+        ^         |                 |
+        |         |                 v
+Target --         --> Target Feats -->  GRL --> DomainDisc --> Domain Prediction
+
+

This version of DANN was introduced by +Siahpour et al..

+ + + +
+ + + + + + + + +
+ + + +

+ ConsistencyApproach + + +

+ + +
+

+ Bases: AdaptionApproach

+ + +

The Consistency DANN approach introduces a consistency loss that keeps the +weights of the feature extractor close to the ones of a pre-trained version. This +approach should only be used with a pre-trained feature extractor. Otherwise, +the consistency loss would serve no purpose.

+

The regressor and domain discriminator need the same number of input units as the +feature extractor has output units. The discriminator is not allowed to have an +activation function on its last layer for it to work with the DANN loss.

+ + + +

Examples:

+
>>> from rul_adapt import model
+>>> from rul_adapt import approach
+>>> feat_ex = model.CnnExtractor(1, [16, 16, 1], 10, fc_units=16)
+>>> reg = model.FullyConnectedHead(16, [1])
+>>> disc = model.FullyConnectedHead(16, [8, 1], act_func_on_last_layer=False)
+>>> pre = approach.SupervisedApproach("rmse")
+>>> pre.set_model(feat_ex, reg, disc)
+>>> main = approach.ConsistencyApproach(1.0, 100)
+>>> main.set_model(pre.feature_extractor, pre.regressor, disc)
+
+ + + + +
+ + + + + + + +
+ + + +

+ dann_factor + + + property + + +

+ + +
+ +

Return the influency of the DANN loss based on the current epoch.

+

It is calculated as: 2 / (1 + math.exp(-10 * current_epoch / max_epochs)) - 1

+
+ +
+ +
+ + + +

+ domain_disc + + + property + + +

+ + +
+ +

The domain discriminator network.

+
+ +
+ + + + +
+ + + +

+ __init__(consistency_factor, max_epochs, loss_type='rmse', rul_score_mode='phm08', evaluate_degraded_only=False, **optim_kwargs) + +

+ + +
+ +

Create a new consistency DANN approach.

+

The consistency factor is the strength of the consistency loss' influence. +The influence of the DANN loss is increased during the training process. It +starts at zero and reaches one at max_epochs.

+

The domain discriminator is set by the set_model function together with the +feature extractor and regressor. For more information, see the approach module page.

+

For more information about the possible optimizer keyword arguments, +see here.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
consistency_factor + float + +
+

The strength of the consistency loss' influence.

+
+
+ required +
max_epochs + int + +
+

The number of epochs after which the DANN loss' influence is + maximal.

+
+
+ required +
loss_type + Literal['mse', 'mae', 'rmse'] + +
+

The type of regression loss, either 'mse', 'rmse' or 'mae'.

+
+
+ 'rmse' +
rul_score_mode + Literal['phm08', 'phm12'] + +
+

The mode for the val and test RUL score, either 'phm08' + or 'phm12'.

+
+
+ 'phm08' +
evaluate_degraded_only + bool + +
+

Whether to only evaluate the RUL score on degraded + samples.

+
+
+ False +
**optim_kwargs + Any + +
+

Keyword arguments for the optimizer, e.g. learning rate.

+
+
+ {} +
+ +
+ +
+ + +
+ + + +

+ configure_optimizers() + +

+ + +
+ +

Configure an optimizer to train the feature extractor, regressor and +domain discriminator.

+ +
+ +
+ + +
+ + + +

+ forward(inputs) + +

+ + +
+ +

Predict the RUL values for a batch of input features.

+ +
+ +
+ + +
+ + + +

+ set_model(feature_extractor, regressor, domain_disc=None, *args, **kwargs) + +

+ + +
+ +

Set the feature extractor, regressor and domain discriminator for this approach. +The discriminator is not allowed to have an activation function on its last +layer and needs to use only a single output neuron. It is wrapped by a +DomainAdversarialLoss.

+

A frozen copy of the feature extractor is produced to be used for the +consistency loss. The feature extractor should, therefore, be pre-trained.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
feature_extractor + Module + +
+

The pre-trained feature extraction network.

+
+
+ required +
regressor + Module + +
+

The optionally pre-trained RUL regression network.

+
+
+ required +
domain_disc + Optional[Module] + +
+

The domain discriminator network.

+
+
+ None +
+ +
+ +
+ + +
+ + + +

+ test_step(batch, batch_idx, dataloader_idx) + +

+ + +
+ +

Execute one test step. +The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader idx zero +are assumed to be from the source domain and for dataloader idx one from the +target domain. The metrics are written to the configured logger under the +prefix test. +Args: + batch: A list containing a feature and a label tensor. + batch_idx: The index of the current batch. + dataloader_idx: The index of the current dataloader (0: source, 1: target).

+ +
+ +
+ + +
+ + + +

+ training_step(batch, batch_idx) + +

+ + +
+ +

Execute one training step.

+

The batch argument is a list of three tensors representing the source +features, source labels and target features. Both types of features are fed +to the feature extractor. Then the regression loss for the source domain and +the DANN loss between domains is computed. Afterwards the consistency loss is +calculated. The regression, DANN, consistency and combined loss are logged.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list of a source feature, source label and target feature tensors.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
+

Returns: + The combined loss.

+ +
+ +
+ + +
+ + + +

+ validation_step(batch, batch_idx, dataloader_idx) + +

+ + +
+ +

Execute one validation step. +The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader idx zero +are assumed to be from the source domain and for dataloader idx one from the +target domain. The metrics are written to the configured logger under the +prefix val. +Args: + batch: A list containing a feature and a label tensor. + batch_idx: The index of the current batch. + dataloader_idx: The index of the current dataloader (0: source, 1: target).

+ +
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ StdExtractor + + +

+ + +
+ + +

This extractor can be used to extract the per-feature standard deviation from +windows of data. It can be used to pre-process datasets like FEMTO and XJTU-SY +with the help of the RulDataModule.

+ + + +

Examples:

+

Extract the std of the horizontal acceleration and produce windows of size 30. +

>>> import rul_datasets
+>>> import rul_adapt
+>>> fd1 = rul_datasets.XjtuSyReader(fd=1)
+>>> extractor = rul_adapt.approach.consistency.StdExtractor([0])
+>>> dm = rul_datasets.RulDataModule(fd1, 32, extractor, window_size=30)
+

+ + + + +
+ + + + + + + + + + +
+ + + +

+ __call__(inputs, targets) + +

+ + +
+ +

Extract features from the input data.

+

The input is expected to have a shape of [num_windows, window_size, +num_features]. The output will have a shape of [num_windows, +len(self.channels)].

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
inputs + ndarray + +
+

The input data.

+
+
+ required +
+

Returns: + The features extracted from the input data.

+ +
+ +
+ + +
+ + + +

+ __init__(channels) + +

+ + +
+ +

Create a new feature extractor for standard deviations.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
channels + List[int] + +
+

The list of channel indices to extract features from.

+
+
+ required +
+ +
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/approach/dann/index.html b/api/rul_adapt/approach/dann/index.html new file mode 100644 index 00000000..e9e65bc7 --- /dev/null +++ b/api/rul_adapt/approach/dann/index.html @@ -0,0 +1,2597 @@ + + + + + + + + + + + + + + + + + + + + + + + + + dann - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

dann

+ +
+ + + + +
+ +

The Domain Adversarial Neural Network (DANN) approach uses a domain discriminator +trained on distinguishing the source and target features produced by a shared feature +extractor. A Gradient Reversal Layer +(GRL) is used to train the feature extractor on making its source and target outputs +indistinguishable.

+
Source --> FeatEx --> Source Feats -----------> Regressor  --> RUL Prediction
+        ^         |                 |
+        |         |                 v
+Target --         --> Target Feats -->  GRL --> DomainDisc --> Domain Prediction
+
+

It was originally introduced by Ganin et al. +for image classification.

+ +
+ Used In +
    +
  • da Costa et al. (2020). Remaining useful lifetime prediction via deep domain +adaptation. +Reliability Engineering & System Safety, 195, 106682. +10.1016/J.RESS.2019.106682
  • +
  • Krokotsch et al. (2020). A Novel Evaluation Framework for Unsupervised Domain +Adaption on Remaining Useful Lifetime Estimation. +2020 IEEE International Conference on Prognostics and Health Management (ICPHM). +10.1109/ICPHM49022.2020.9187058
  • +
+
+ + +
+ + + + + + + + +
+ + + +

+ DannApproach + + +

+ + +
+

+ Bases: AdaptionApproach

+ + +

The DANN approach introduces a domain discriminator that is trained on +distinguishing source and target features as a binary classification problem. The +features are produced by a shared feature extractor. The loss in the domain +discriminator is binary cross-entropy.

+

The regressor and domain discriminator need the same number of input units as the +feature extractor has output units. The discriminator is not allowed to have an +activation function on its last layer and needs to use only a single output +neuron because BCEWithLogitsLoss is used.

+ + + +

Examples:

+
>>> from rul_adapt import model
+>>> from rul_adapt import approach
+>>> feat_ex = model.CnnExtractor(1, [16, 16, 1], 10, fc_units=16)
+>>> reg = model.FullyConnectedHead(16, [1])
+>>> disc = model.FullyConnectedHead(16, [8, 1], act_func_on_last_layer=False)
+>>> dann = approach.DannApproach(1.0)
+>>> dann.set_model(feat_ex, reg, disc)
+
+ + + + +
+ + + + + + + +
+ + + +

+ domain_disc + + + property + + +

+ + +
+ +

The domain discriminator network.

+
+ +
+ + + + +
+ + + +

+ __init__(dann_factor, loss_type='mae', rul_score_mode='phm08', evaluate_degraded_only=False, **optim_kwargs) + +

+ + +
+ +

Create a new DANN approach.

+

The strength of the domain discriminator's influence on the feature +extractor is controlled by the dann_factor. The higher it is, the stronger +the influence.

+

Possible options for the regression loss are mae, mse and rmse.

+

The domain discriminator is set by the set_model function together with the +feature extractor and regressor. For more information, see the approach module page.

+

For more information about the possible optimizer keyword arguments, +see here.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
dann_factor + float + +
+

Strength of the domain DANN loss.

+
+
+ required +
loss_type + Literal['mae', 'mse', 'rmse'] + +
+

Type of regression loss.

+
+
+ 'mae' +
rul_score_mode + Literal['phm08', 'phm12'] + +
+

The mode for the val and test RUL score, either 'phm08' + or 'phm12'.

+
+
+ 'phm08' +
evaluate_degraded_only + bool + +
+

Whether to only evaluate the RUL score on degraded + samples.

+
+
+ False +
**optim_kwargs + Any + +
+

Keyword arguments for the optimizer, e.g. learning rate.

+
+
+ {} +
+ +
+ +
+ + +
+ + + +

+ configure_optimizers() + +

+ + +
+ +

Configure an optimizer for the whole model.

+ +
+ +
+ + +
+ + + +

+ forward(inputs) + +

+ + +
+ +

Predict the RUL values for a batch of input features.

+ +
+ +
+ + +
+ + + +

+ set_model(feature_extractor, regressor, domain_disc=None, *args, **kwargs) + +

+ + +
+ +

Set the feature extractor, regressor, and domain discriminator for this +approach.

+

The discriminator is not allowed to have an activation function on its last +layer and needs to use only a single output neuron. It is wrapped by a +DomainAdversarialLoss.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
feature_extractor + Module + +
+

The feature extraction network.

+
+
+ required +
regressor + Module + +
+

The RUL regression network.

+
+
+ required +
domain_disc + Optional[Module] + +
+

The domain discriminator network.

+
+
+ None +
+ +
+ +
+ + +
+ + + +

+ test_step(batch, batch_idx, dataloader_idx) + +

+ + +
+ +

Execute one test step.

+

The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader idx zero +are assumed to be from the source domain and for dataloader idx one from the +target domain. The metrics are written to the configured logger under the +prefix test.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list containing a feature and a label tensor.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
dataloader_idx + int + +
+

The index of the current dataloader (0: source, 1: target).

+
+
+ required +
+ +
+ +
+ + +
+ + + +

+ training_step(batch, batch_idx) + +

+ + +
+ +

Execute one training step.

+

The batch argument is a list of three tensors representing the source +features, source labels and target features. Both types of features are fed +to the feature extractor. Then the regression loss for the source domain and +the DANN loss between domains is computed. The regression, DANN and combined +loss are logged.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list of a source feature, source label and target feature tensors.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
+

Returns: + The combined loss.

+ +
+ +
+ + +
+ + + +

+ validation_step(batch, batch_idx, dataloader_idx) + +

+ + +
+ +

Execute one validation step.

+

The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader idx zero +are assumed to be from the source domain and for dataloader idx one from the +target domain. The metrics are written to the configured logger under the +prefix val.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list containing a feature and a label tensor.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
dataloader_idx + int + +
+

The index of the current dataloader (0: source, 1: target).

+
+
+ required +
+ +
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/approach/evaluation/index.html b/api/rul_adapt/approach/evaluation/index.html new file mode 100644 index 00000000..a489749f --- /dev/null +++ b/api/rul_adapt/approach/evaluation/index.html @@ -0,0 +1,1847 @@ + + + + + + + + + + + + + + + + + + + + + + + + + evaluation - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

evaluation

+ +
+ + + + +
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/approach/index.html b/api/rul_adapt/approach/index.html new file mode 100644 index 00000000..ac2d2b74 --- /dev/null +++ b/api/rul_adapt/approach/index.html @@ -0,0 +1,1802 @@ + + + + + + + + + + + + + + + + + + + + + + + + + approach - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

approach

+ +
+ + + + +
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/approach/latent_align/index.html b/api/rul_adapt/approach/latent_align/index.html new file mode 100644 index 00000000..3b1ed57f --- /dev/null +++ b/api/rul_adapt/approach/latent_align/index.html @@ -0,0 +1,3459 @@ + + + + + + + + + + + + + + + + + + + + + + + + + latent_align - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + + + + + +
+
+ + + + + + + +

latent_align

+ +
+ + + + +
+ +

The latent space alignment approach uses several auxiliary losses to align the +latent space of the source and target domain produced by a shared feature extractor:

+
    +
  • Healthy State Alignment: Pushes the healthy data of both domains into a single + compact cluster
  • +
  • Degradation Direction Alignment: Minimizes the angle between degraded data + points with the healthy cluster as origin
  • +
  • Degradation Level Alignment: Aligns the distance of degraded data points from the + healthy cluster to the number of time steps in degradation
  • +
  • Degradation Fusion: Uses a + MMD loss to align the + distribution of both domains
  • +
+

Which features are considered in the healthy state and which in degradation is either +determined by taking the first few steps of each time series or by using a +first-time-to-predict estimation. The first variant is used for CMAPSS, the second +for XJTU-SY.

+

The approach was introduced by Zhang et al. in 2021. For applying the approach on raw +vibration data, i.e. XJTU-SY, it uses a windowing scheme and +first-point-to-predict estimation introduced by Li et al. in 2020.

+ + + +
+ + + + + + + + +
+ + + +

+ LatentAlignApproach + + +

+ + +
+

+ Bases: AdaptionApproach

+ + +

The latent alignment approach introduces four latent space alignment losses to +align the latent space of a shared feature extractor to both source and target +domain.

+ + + +

Examples:

+
>>> from rul_adapt import model, approach
+>>> feat_ex = model.CnnExtractor(1, [16, 16, 1], 10, fc_units=16)
+>>> reg = model.FullyConnectedHead(16, [1])
+>>> latent_align = approach.LatentAlignApproach(0.1, 0.1, 0.1, 0.1, lr=0.001)
+>>> latent_align.set_model(feat_ex, reg)
+
+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__(alpha_healthy, alpha_direction, alpha_level, alpha_fusion, loss_type='mse', rul_score_mode='phm08', evaluate_degraded_only=False, labels_as_percentage=False, **optim_kwargs) + +

+ + +
+ +

Create a new latent alignment approach.

+

Each of the alphas controls the influence of the respective loss on the +training. Commonly they are all set to the same value.

+

For more information about the possible optimizer keyword arguments, +see here.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
alpha_healthy + float + +
+

The influence of the healthy state alignment loss.

+
+
+ required +
alpha_direction + float + +
+

The influence of the degradation direction alignment loss.

+
+
+ required +
alpha_level + float + +
+

The influence of the degradation level regularization loss.

+
+
+ required +
alpha_fusion + float + +
+

The influence of the degradation fusion (MMD) loss.

+
+
+ required +
loss_type + Literal['mse', 'mae', 'rmse'] + +
+

The type of regression loss to use.

+
+
+ 'mse' +
rul_score_mode + Literal['phm08', 'phm12'] + +
+

The mode for the val and test RUL score, either 'phm08' + or 'phm12'.

+
+
+ 'phm08' +
evaluate_degraded_only + bool + +
+

Whether to only evaluate the RUL score on degraded + samples.

+
+
+ False +
labels_as_percentage + bool + +
+

Whether to multiply labels by 100 to get percentages

+
+
+ False +
**optim_kwargs + Any + +
+

Keyword arguments for the optimizer, e.g. learning rate.

+
+
+ {} +
+ +
+ +
+ + +
+ + + +

+ configure_optimizers() + +

+ + +
+ +

Configure an optimizer.

+ +
+ +
+ + +
+ + + +

+ forward(features) + +

+ + +
+ +

Predict the RUL values for a batch of input features.

+ +
+ +
+ + +
+ + + +

+ test_step(batch, batch_idx, dataloader_idx) + +

+ + +
+ +

Execute one test step.

+

The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader idx zero +are assumed to be from the source domain and for dataloader idx one from the +target domain. The metrics are written to the configured logger under the +prefix test.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list containing a feature and a label tensor.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
dataloader_idx + int + +
+

The index of the current dataloader (0: source, 1: target).

+
+
+ required +
+ +
+ +
+ + +
+ + + +

+ training_step(batch, batch_idx) + +

+ + +
+ +

Execute one training step.

+

The batch contains the following tensors in order:

+
    +
  • The source domain features.
  • +
  • The steps in degradation for the source features.
  • +
  • The RUL labels for the source features.
  • +
  • The target domain features.
  • +
  • The steps in degradation for the target features.
  • +
  • The healthy state features for both domains.
  • +
+

The easies way to produce such a batch is using the LatentAlignDataModule.

+

The source, target and healthy features are passed through the feature +extractor. Afterward, these high-level features are used to compute the +alignment losses. The source domain RUL predictions are computed using the +regressor and used to calculate the MSE loss. The losses are then combined. +Each separate and the combined loss are logged.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + Tuple[Tensor, ...] + +
+

The batch of data.

+
+
+ required +
batch_idx + int + +
+

The index of the batch.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ Tensor + +
+

The combined loss.

+
+
+ +
+ +
+ + +
+ + + +

+ validation_step(batch, batch_idx, dataloader_idx) + +

+ + +
+ +

Execute one validation step.

+

The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader idx zero +are assumed to be from the source domain and for dataloader idx one from the +target domain. The metrics are written to the configured logger under the +prefix val.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list containing a feature and a label tensor.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
dataloader_idx + int + +
+

The index of the current dataloader (0: source, 1: target).

+
+
+ required +
+ +
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ LatentAlignFttpApproach + + +

+ + +
+

+ Bases: AdaptionApproach

+ + +

This first-point-to-predict estimation approach trains a GAN on healthy state +bearing data. The discriminator can be used afterward to compute a health +indicator for each bearing.

+

The feature extractor and regressor models are used as the discriminator. The +regressor is not allowed to have an activation function on its last layer and +needs to use only a single output neuron because BCEWithLogitsLoss is used. The generator receives noise with the shape +[batch_size, 1, noise_dim]. The generator needs an output with enough elements so +that it can be reshaped to the same shape as the real input data. The reshaping +is done internally.

+

Both generator and discriminator are trained at once by using a +Gradient Reversal Layer +between them.

+ + + +

Examples:

+
>>> from rul_adapt import model, approach
+>>> feat_ex = model.CnnExtractor(1, [16, 16, 1], 10, fc_units=16)
+>>> reg = model.FullyConnectedHead(16, [1])
+>>> gen = model.CnnExtractor(1, [1], 10, padding=True)
+>>> fttp_model = approach.LatentAlignFttpApproach(1e-4, 10)
+>>> fttp_model.set_model(feat_ex, reg, gen)
+>>> health_indicator = fttp_model(torch.randn(16, 1, 10)).std()
+
+ + + + +
+ + + + + + + +
+ + + +

+ generator + + + property + + +

+ + +
+ +

The generator network.

+
+ +
+ + + + +
+ + + +

+ __init__(noise_dim, **optim_kwargs) + +

+ + +
+ +

Create a new FTTP estimation approach.

+

The generator is set by the set_model function together with the feature +extractor and regressor.

+

For more information about the possible optimizer keyword arguments, +see here.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
noise_dim + int + +
+

The size of the last dimension of the noise tensor.

+
+
+ required +
**optim_kwargs + Any + +
+

Keyword arguments for the optimizer, e.g. learning rate.

+
+
+ {} +
+ +
+ +
+ + +
+ + + +

+ configure_optimizers() + +

+ + +
+ +

Configure an optimizer for the generator and discriminator.

+ +
+ +
+ + +
+ + + +

+ forward(inputs) + +

+ + +
+ +

Predict the health indicator for the given inputs.

+ +
+ +
+ + +
+ + + +

+ set_model(feature_extractor, regressor, generator=None, *args, **kwargs) + +

+ + +
+ +

Set the feature extractor, regressor (forming the discriminator) and +generator for this approach.

+

The regressor is not allowed to have an activation function on its last layer +and needs to use only a single output neuron. The generator receives noise +with the shape [batch_size, 1, noise_dim]. The generator needs an output with +enough elements so that it can be reshaped to the same shape as the real +input data. The reshaping is done internally.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
feature_extractor + Module + +
+

The feature extraction network.

+
+
+ required +
regressor + Module + +
+

The regressor functioning as the head of the discriminator.

+
+
+ required +
generator + Optional[Module] + +
+

The generator network.

+
+
+ None +
+ +
+ +
+ + +
+ + + +

+ training_step(batch) + +

+ + +
+ +

Execute one training step.

+

The batch is a tuple of the features and the labels. The labels are ignored. +A noise tensor is passed to the generator to generate fake features. The +discriminator classifies if the features are real or fake and the binary +cross entropy loss is calculated. Real features receive the label zero and +the fake features one.

+

Both generator and discriminator are trained at once by using a +Gradient Reversal Layer +between them. At the end, the loss is logged.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + Tuple[Tensor, Tensor] + +
+

A tuple of feature and label tensors.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ Tensor + +
+

The classification loss.

+
+
+ +
+ +
+ + + +
+ +
+ + +
+ + + +
+ + + +

+ extract_chunk_windows(features, window_size, chunk_size) + +

+ + +
+ +

Extract chunk windows from the given features of shape [num_org_windows, +org_window_size, num_features].

+

A chunk window is a window that consists of window_size chunks. Each original +window is split into chunks of size chunk_size. A chunk window is then formed +by concatenating chunks from the same position inside window_size consecutive +original windows. Therefore, each original window is represented by +org_window_size // chunk_size chunk windows. The original window size must +therefor be divisible by the chunk size.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
features + ndarray + +
+

The features to extract the chunk windows from.

+
+
+ required +
window_size + int + +
+

The number of consecutive original windows to form a chunk window + from.

+
+
+ required +
chunk_size + int + +
+

The size of the chunks to extract from the original windows.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ndarray + +
+

Chunk windows of shape [num_windows, window_size * chunk_size, num_features].

+
+
+ +
+ +
+ + +
+ + + +

+ get_first_time_to_predict(fttp_model, features, window_size, chunk_size, healthy_index, threshold_coefficient) + +

+ + +
+ +

Get the first time step to predict for the given features.

+

The features are pre-processed via the extract_chunk_windows function and fed in +batches to the fttp_model. Each batch consists of the chunk windows that end in +the same original feature window. The health indicator for the original window is +calculated as the standard deviation of the predictions of the fttp_model.

+

The first-time-to-predict is the first time step where the health indicator is +larger than threshold_coefficient times the mean of the health indicator for +the first healthy_index time steps. If the threshold is never exceeded, +a RuntimeError is raised.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
fttp_model + LatentAlignFttpApproach + +
+

The model to use for the health indicator calculation.

+
+
+ required +
features + ndarray + +
+

The features to calculate the first-time-to-predict for.

+
+
+ required +
window_size + int + +
+

The size of the chunk windows to extract.

+
+
+ required +
chunk_size + int + +
+

The size of the chunks for each chunk window to extract.

+
+
+ required +
healthy_index + int + +
+

The index of the last healthy time step.

+
+
+ required +
threshold_coefficient + float + +
+

The threshold coefficient for the health indicator.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ int + +
+

The original window index of the first-time-to-predict.

+
+
+ +
+ +
+ + +
+ + + +

+ get_health_indicator(fttp_model, features, window_size, chunk_size) + +

+ + +
+ +

Get the health indicator for the given features.

+

The features are pre-processed via the extract_chunk_windows function and fed in +batches to the fttp_model. Each batch consists of the chunk windows that end in +the same original feature window. The health indicator for the original window is +calculated as the standard deviation of the predictions of the fttp_model.

+

The length of the returned health indicator array is shorter than the features +array by window_size - 1, due to the chunk windowing. This means the first +health indicator value belongs to the original window with the index +window_size - 1.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
fttp_model + Module + +
+

The model to use for the health indicator calculation.

+
+
+ required +
features + ndarray + +
+

The features to calculate the health indicator for.

+
+
+ required +
window_size + int + +
+

The size of the chunk windows to extract.

+
+
+ required +
chunk_size + int + +
+

The size of the chunks for each chunk window to extract.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ndarray + +
+

The health indicator for the original windows.

+
+
+ +
+ +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/approach/mmd/index.html b/api/rul_adapt/approach/mmd/index.html new file mode 100644 index 00000000..3dac857a --- /dev/null +++ b/api/rul_adapt/approach/mmd/index.html @@ -0,0 +1,2464 @@ + + + + + + + + + + + + + + + + + + + + + + + + + mmd - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

mmd

+ +
+ + + + +
+ +

The Maximum Mean Discrepancy (MMD) approach uses the distance measure of the same +name to adapt a feature extractor. This implementation uses a multi-kernel variant of +the MMD loss with bandwidths +set via the median heuristic.

+
Source --> FeatEx --> Source Feats -----------> Regressor  --> RUL Prediction
+        ^         |                 |
+        |         |                 v
+Target --         --> Target Feats -->  MMD Loss
+
+

It was first introduced by Long et al. as Deep Adaption Network (DAN) for +image classification.

+ +
+ Used In +
    +
  • Cao et al. (2021). Transfer learning for remaining useful life prediction of +multi-conditions bearings based on bidirectional-GRU network. +Measurement: Journal of the International Measurement Confederation, 178. +10.1016/j.measurement.2021.109287
  • +
  • Krokotsch et al. (2020). A Novel Evaluation Framework for Unsupervised Domain +Adaption on Remaining Useful Lifetime Estimation. +2020 IEEE International Conference on Prognostics and Health Management (ICPHM). +10.1109/ICPHM49022.2020.9187058
  • +
+
+ + +
+ + + + + + + + +
+ + + +

+ MmdApproach + + +

+ + +
+

+ Bases: AdaptionApproach

+ + +

The MMD uses the Maximum Mean Discrepancy to adapt a feature extractor to +be used with the source regressor.

+

The regressor needs the same number of input units as the feature extractor has +output units.

+ + + +

Examples:

+
>>> from rul_adapt import model
+>>> from rul_adapt import approach
+>>> feat_ex = model.CnnExtractor(1, [16, 16, 1], 10, fc_units=16)
+>>> reg = model.FullyConnectedHead(16, [1])
+>>> mmd = approach.MmdApproach(0.01)
+>>> mmd.set_model(feat_ex, reg)
+
+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__(mmd_factor, num_mmd_kernels=5, loss_type='mse', rul_score_mode='phm08', evaluate_degraded_only=False, **optim_kwargs) + +

+ + +
+ +

Create a new MMD approach.

+

The strength of the influence of the MMD loss on the feature +extractor is controlled by the mmd_factor. The higher it is, the stronger +the influence.

+

For more information about the possible optimizer keyword arguments, +see here.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
mmd_factor + float + +
+

The strength of the MMD loss' influence.

+
+
+ required +
num_mmd_kernels + int + +
+

The number of kernels for the MMD loss.

+
+
+ 5 +
loss_type + Literal['mse', 'rmse', 'mae'] + +
+

The type of regression loss, either 'mse', 'rmse' or 'mae'.

+
+
+ 'mse' +
rul_score_mode + Literal['phm08', 'phm12'] + +
+

The mode for the val and test RUL score, either 'phm08' + or 'phm12'.

+
+
+ 'phm08' +
evaluate_degraded_only + bool + +
+

Whether to only evaluate the RUL score on degraded + samples.

+
+
+ False +
**optim_kwargs + Any + +
+

Keyword arguments for the optimizer, e.g. learning rate.

+
+
+ {} +
+ +
+ +
+ + +
+ + + +

+ configure_optimizers() + +

+ + +
+ +

Configure an optimizer.

+ +
+ +
+ + +
+ + + +

+ forward(inputs) + +

+ + +
+ +

Predict the RUL values for a batch of input features.

+ +
+ +
+ + +
+ + + +

+ test_step(batch, batch_idx, dataloader_idx) + +

+ + +
+ +

Execute one test step.

+

The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader idx zero +are assumed to be from the source domain and for dataloader idx one from the +target domain. The metrics are written to the configured logger under the +prefix test.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list containing a feature and a label tensor.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
dataloader_idx + int + +
+

The index of the current dataloader (0: source, 1: target).

+
+
+ required +
+ +
+ +
+ + +
+ + + +

+ training_step(batch, batch_idx) + +

+ + +
+ +

Execute one training step.

+

The batch argument is a list of three tensors representing the source +features, source labels and target features. Both types of features are fed +to the feature extractor. Then the regression loss for the source domain and +the MMD loss between domains is computed. The regression, MMD and combined +loss are logged.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list of a source feature, source label and target feature tensors.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
+

Returns: + The combined loss.

+ +
+ +
+ + +
+ + + +

+ validation_step(batch, batch_idx, dataloader_idx) + +

+ + +
+ +

Execute one validation step.

+

The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader idx zero +are assumed to be from the source domain and for dataloader idx one from the +target domain. The metrics are written to the configured logger under the +prefix val.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list containing a feature and a label tensor.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
dataloader_idx + int + +
+

The index of the current dataloader (0: source, 1: target).

+
+
+ required +
+ +
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/approach/pseudo_labels/index.html b/api/rul_adapt/approach/pseudo_labels/index.html new file mode 100644 index 00000000..d46ce326 --- /dev/null +++ b/api/rul_adapt/approach/pseudo_labels/index.html @@ -0,0 +1,2158 @@ + + + + + + + + + + + + + + + + + + + + + + + + + pseudo_labels - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

pseudo_labels

+ +
+ + + + +
+ +

Pseudo labeling is a simple approach that takes a model trained on the source +domain to label the target domain. Afterward, the model training is continued on the +combined source and target data. This process is repeated until the validation loss +converges.

+ +
+ Used In +
    +
  • Wang et al. (2022). Residual Life Prediction of Bearings Based on SENet-TCN +and Transfer Learning. IEEE Access, 10, +10.1109/ACCESS.2022.3223387
  • +
+
+ + +

Examples:

+
import torch
+import rul_datasets
+import pytorch_lightning as pl
+
+from rul_adapt import model
+from rul_adapt import approach
+
+feat_ex = model.CnnExtractor(14, [16], 30, fc_units=16)
+reg = model.FullyConnectedHead(16, [1])
+
+supervised = approach.SupervisedApproach(0.001, "rmse", "adam")
+supervised.set_model(feat_ex, reg)
+
+fd1 = rul_datasets.RulDataModule(rul_datasets.CmapssReader(1), 32)
+fd1.setup()
+fd3 = rul_datasets.RulDataModule(rul_datasets.CmapssReader(3), 32)
+fd3.setup()
+
+trainer = pl.Trainer(max_epochs=10)
+trainer.fit(supervised, fd3)
+
+pseudo_labels = approach.generate_pseudo_labels(fd1, supervised)
+pseudo_labels = [max(0, min(125, pl)) for pl in pseudo_labels]
+approach.patch_pseudo_labels(fd3, pseudo_labels)
+
+combined_data = torch.utils.data.ConcatDataset(
+    [fd1.to_dataset("dev"), fd3.to_dataset("dev")]
+)
+combined_dl = torch.utils.data.DataLoader(combined_data, batch_size=32)
+
+trainer = pl.Trainer(max_epochs=10)
+trainer.fit(supervised, train_dataloader=combined_dl)
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ generate_pseudo_labels(dm, model, inductive=False) + +

+ + +
+ +

Generate pseudo labels for the dev set of a data module.

+

The pseudo labels are generated for the last timestep of each run. They are +returned raw and may therefore contain values bigger than max_rul or negative +values. It is recommended to clip them to zero and max_rul respectively before +using them to patch a reader.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
dm + RulDataModule + +
+

The data module to generate pseudo labels for.

+
+
+ required +
model + Module + +
+

The model to use for generating the pseudo labels.

+
+
+ required +
inductive + bool + +
+

Whether to generate pseudo labels for inductive adaption, + i.e., use 'test' instead of 'dev' split.

+
+
+ False +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ List[float] + +
+

A list of pseudo labels for the dev set of the data module.

+
+
+ +
+ +
+ + +
+ + + +

+ get_max_rul(reader) + +

+ + +
+ +

Resolve the maximum RUL of a reader to be comparable to floats.

+ +
+ +
+ + +
+ + + +

+ patch_pseudo_labels(dm, pseudo_labels, inductive=False) + +

+ + +
+ +

Patch a data module with pseudo labels in-place.

+

The pseudo labels are used to replace the RUL targets of the dev set of the data +module. The validation and test sets are not affected.

+

It is not possible to patch the same data module multiple times. Instead, +instantiate a fresh data module and patch that one.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
dm + RulDataModule + +
+

The data module to patch.

+
+
+ required +
pseudo_labels + List[float] + +
+

The pseudo labels to use for patching the data module.

+
+
+ required +
inductive + bool + +
+

Whether to generate pseudo labels for inductive adaption, + i.e., use 'test' instead of 'dev' split.

+
+
+ False +
+ +
+ +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/approach/supervised/index.html b/api/rul_adapt/approach/supervised/index.html new file mode 100644 index 00000000..e6dd0f67 --- /dev/null +++ b/api/rul_adapt/approach/supervised/index.html @@ -0,0 +1,2338 @@ + + + + + + + + + + + + + + + + + + + + + + + + + supervised - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

supervised

+ +
+ + + + +
+ +

The supervised approach trains solely on the labeled source domain. It can be used +for pre-training or as a baseline to compare adaption approaches against.

+
Data --> FeatureExtractor --> Features --> Regressor  --> RUL Prediction
+
+ + + +
+ + + + + + + + +
+ + + +

+ SupervisedApproach + + +

+ + +
+

+ Bases: AdaptionApproach

+ + +

The supervised approach uses either MSE, MAE or RMSE loss to train a feature +extractor and regressor in a supervised fashion on the source domain. It can be +used either for pre-training or as a baseline to compare adaption approaches +against.

+

The regressor needs the same number of input units as the feature extractor has +output units.

+ + + +

Examples:

+
>>> from rul_adapt import model
+>>> from rul_adapt import approach
+>>> feat_ex = model.CnnExtractor(1, [16, 16, 1], 10, fc_units=16)
+>>> reg = model.FullyConnectedHead(16, [1])
+>>> disc = model.FullyConnectedHead(16, [8, 1], act_func_on_last_layer=False)
+>>> main = approach.SupervisedApproach("mse")
+>>> main.set_model(feat_ex, reg, disc)
+
+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__(loss_type, rul_scale=1, rul_score_mode='phm08', evaluate_degraded_only=False, **optim_kwargs) + +

+ + +
+ +

Create a supervised approach.

+

The regressor output can be scaled with rul_scale to control its +magnitude. By default, the RUL values are not scaled.

+

For more information about the possible optimizer keyword arguments, +see here.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
rul_score_mode + Literal['phm08', 'phm12'] + +
+ +
+
+ 'phm08' +
loss_type + Literal['mse', 'mae', 'rmse'] + +
+

Training loss function to use. Either 'mse', 'mae' or 'rmse'.

+
+
+ required +
rul_scale + int + +
+

Scalar to multiply the RUL prediction with.

+
+
+ 1 +
evaluate_degraded_only + bool + +
+

Whether to only evaluate the RUL score on degraded + samples.

+
+
+ False +
**optim_kwargs + Any + +
+

Keyword arguments for the optimizer, e.g. learning rate.

+
+
+ {} +
+ +
+ +
+ + +
+ + + +

+ test_step(batch, batch_idx, dataloader_idx=-1) + +

+ + +
+ +

Execute one test step.

+

The batch argument is a list of two tensors representing features and +labels. A RUL prediction is made from the features and the validation RMSE +and RUL score are calculated. The metrics recorded for dataloader idx zero +are assumed to be from the source domain and for dataloader idx one from the +target domain. The metrics are written to the configured logger under the +prefix test.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list containing a feature and a label tensor.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
dataloader_idx + int + +
+

The index of the current dataloader (0: source, 1: target).

+
+
+ -1 +
+ +
+ +
+ + +
+ + + +

+ training_step(batch, batch_idx) + +

+ + +
+ +

Execute one training step.

+

The batch argument is a list of two tensors representing features and +labels. The features are used to predict RUL values that are compared against +the labels with the specified training loss. The loss is then logged.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list of feature and label tensors.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
+

Returns: + The training loss.

+ +
+ +
+ + +
+ + + +

+ validation_step(batch, batch_idx, dataloader_idx=-1) + +

+ + +
+ +

Execute one validation step.

+

The batch argument is a list of two tensors representing features and +labels. The features are used to predict RUL values that are compared against +the labels with an RMSE loss. The loss is then logged.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
batch + List[Tensor] + +
+

A list of feature and label tensors.

+
+
+ required +
batch_idx + int + +
+

The index of the current batch.

+
+
+ required +
+ +
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/approach/tbigru/index.html b/api/rul_adapt/approach/tbigru/index.html new file mode 100644 index 00000000..2d9b6ee9 --- /dev/null +++ b/api/rul_adapt/approach/tbigru/index.html @@ -0,0 +1,2597 @@ + + + + + + + + + + + + + + + + + + + + + + + + + tbigru - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

tbigru

+ +
+ + + + +
+ +

The TBiGRU approach uses a feature selection mechanism to mine transferable +features and a bearing running state detection to determine the +first-time-to-predict. The training is done with an MMD approach.

+

The feature selection uses a distance measure based on Dynamic Time Warping and the +Wasserstein distance. From a set of 30 common vibration features the ones with the +smallest distance between source and target domain are selected. These features serve +as inputs to the network.

+

The first-time-to-predict (FTTP) is used to generate the RUL labels for training. +FTTP is the time step where the degradation can be detected for the first time. The +RUL labels before this time step should be constant. The TBiGRU approach uses the +moving average correlation (MAC) of the energy entropies of four levels of maximal +overlap discrete wavelet transform (MODWT) decompositions to determine four running +states of each bearing. The end of the steady running state marks the FTTP.

+

TBiGRU was introduced by Cao et al. and evaluated on the FEMTO Bearing +dataset.

+ + + +
+ + + + + + + + +
+ + + +

+ VibrationFeatureExtractor + + +

+ + +
+ + +

This class extracts 30 different features from a raw acceleration signal.

+

The features are: RMS, kurtosis, peak2peak, standard deviation, skewness, +margin factor, impulse factor, energy, median absolute, gini factor, maximum +absolute, mean absolute, energies of the 16 bands resulting from wavelet packet +decomposition, standard deviation of arccosh and arcsinh. If the input has n +features, n*30 features are extracted. Additionally, it features a scaler that +can be fit to scale all extracted features between [0, 1].

+ + + + +
+ + + + + + + + + + +
+ + + +

+ __call__(features, targets) + +

+ + +
+ +

Extract the features from the input and optionally scale them.

+

The features should have the shape [num_windows, window_size, +num_input_features] and the targets [num_windows].

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
features + ndarray + +
+

The input features.

+
+
+ required +
targets + ndarray + +
+

The input targets.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ Tuple[ndarray, ndarray] + +
+

The extracted features and input targets.

+
+
+ +
+ +
+ + +
+ + + +

+ __init__(num_input_features, feature_idx=None) + +

+ + +
+ +

Create a new vibration feature extractor with the selected features.

+

The features are sorted as f1_1, .., f1_j, ..., fi_j, where i is the index of +the computed feature (between 0 and 30) and j is the index of the raw +feature (between 0 and num_input_features).

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
num_input_features + int + +
+

The number of input features.

+
+
+ required +
feature_idx + Optional[List[int]] + +
+

The indices of the features to compute.

+
+
+ None +
+ +
+ +
+ + +
+ + + +

+ fit(features) + +

+ + +
+ +

Fit the internal scaler on a list of raw feature time series.

+

The time series are passed through the feature extractor and then used to fit +the internal min-max scaler. Each time series in the list should have the +shape [num_windows, window_size, num_input_features].

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
features + List[ndarray] + +
+

The list of raw feature time series.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ VibrationFeatureExtractor + +
+

The feature extractor itself.

+
+
+ +
+ +
+ + + +
+ +
+ + +
+ + + +
+ + + +

+ mac(inputs, window_size, wavelet='dmey') + +

+ + +
+ +

Calculate the moving average correlation (MAC) of the energy entropies of four +levels of maximal overlap discrete wavelet transform (MODWT) decompositions.

+

The wavelet is a wavelet description that can be passed to pywt. The default +wavelet was confirmed by the original authors. For more options call +pywt.wavelist. The input signal should have the shape [num_windows, +window_size, num_features].

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
inputs + ndarray + +
+

The input acceleration signal.

+
+
+ required +
window_size + int + +
+

The window size of the sliding window to calculate the average + over.

+
+
+ required +
wavelet + str + +
+

The description of the wavelet, e.g. 'sym4'.

+
+
+ 'dmey' +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ndarray + +
+

The MAC of the input signal which is window_size - 1 shorter.

+
+
+ +
+ +
+ + +
+ + + +

+ modwpt(inputs, wavelet, level) + +

+ + +
+ +

Apply Maximal Overlap Discrete Wavelet Packet Transformation (MODWT) of level +to the input.

+

The wavelet should be a string that can be passed to pywt to construct a +wavelet function. For more options call pywt.wavelist. The implementation was +inspired by this repository.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
inputs + ndarray + +
+

An input signal of shape [num_windows, window_size, num_features].

+
+
+ required +
wavelet + str + +
+

The description of the wavelet function, e.g. 'sym4'.

+
+
+ required +
level + int + +
+

The decomposition level.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ndarray + +
+

The 2**level decompositions stacked in the last axis.

+
+
+ +
+ +
+ + +
+ + + +

+ select_features(source, target, num_features) + +

+ + +
+ +

Select the most transferable features between source and target domain.

+

30 features are considered: RMS, kurtosis, peak2peak, standard deviation, skewness, +margin factor, impulse factor, energy, median absolute, gini factor, maximum +absolute, mean absolute, energies of the 16 bands resulting from wavelet packet +decomposition, standard deviation of arccosh and arcsinh. If the input has n raw +features, n*30 features are extracted.

+

The dev splits of both domains are used to calculate a distance metric based on +Dynamic Time Warping and the Wasserstein Distance. The indices of the +num_feature features with the lowest distances are returned.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
source + AbstractReader + +
+

The reader of the source domain.

+
+
+ required +
target + AbstractReader + +
+

The reader of the target domain.

+
+
+ required +
num_features + int + +
+

The number of transferable features to return.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ List[int] + +
+

The indices of features ordered by transferability.

+
+
+ +
+ +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/construct/adarul/functional/index.html b/api/rul_adapt/construct/adarul/functional/index.html new file mode 100644 index 00000000..90dfb715 --- /dev/null +++ b/api/rul_adapt/construct/adarul/functional/index.html @@ -0,0 +1,2156 @@ + + + + + + + + + + + + + + + + + + + + + + + + + functional - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

functional

+ +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ adarul_from_config(config, pre_trainer_kwargs=None, trainer_kwargs=None) + +

+ + +
+ +

Construct an ADARUL approach from a configuration.

+

The configuration can be created by calling get_adarul_config.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
config + DictConfig + +
+

The ADARUL config.

+
+
+ required +
pre_trainer_kwargs + Optional[Dict[str, Any]] + +
+

Overrides for the pre-training trainer class.

+
+
+ None +
trainer_kwargs + Optional[Dict[str, Any]] + +
+

Overrides for the main trainer class.

+
+
+ None +
+

Returns: + pre: The data module, approach and trainer for the pre-training stage + main: The data module, approach, domain discriminator and trainer for + the main stage

+ +
+ +
+ + +
+ + + +

+ get_adarul(source_fd, target_fd, pre_trainer_kwargs=None, trainer_kwargs=None) + +

+ + +
+ +

Construct an ADARUL approach with the original hyperparameters on CMAPSS.

+ + + +

Examples:

+
>>> import rul_adapt
+>>> pre, main = rul_adapt.construct.get_adarul(, 3, 1)
+>>> pre_dm, pre_approach, pre_trainer = pre
+>>> dm, approach, domain_disc, trainer = main
+
+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
source_fd + int + +
+

The source FD of CMAPSS.

+
+
+ required +
target_fd + int + +
+

The target FD of CMAPSS.

+
+
+ required +
pre_trainer_kwargs + Optional[Dict[str, Any]] + +
+

Overrides for the pre-training trainer class.

+
+
+ None +
trainer_kwargs + Optional[Dict[str, Any]] + +
+

Overrides for the main trainer class.

+
+
+ None +
+

Returns: + pre: The data module, approach and trainer for the pre-training stage + main: The data module, approach, domain discriminator and trainer for + the main stage

+ +
+ +
+ + +
+ + + +

+ get_adarul_config(source_fd, target_fd) + +

+ + +
+ +

Get a configuration for the ADARUL approach.

+

The configuration can be modified and fed to adarul_from_config to create the +approach.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
source_fd + int + +
+

The source FD of CMAPSS.

+
+
+ required +
target_fd + int + +
+

The target FD of CMAPSS.

+
+
+ required +
+

Returns: + The ADARUL configuration.

+ +
+ +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/construct/adarul/index.html b/api/rul_adapt/construct/adarul/index.html new file mode 100644 index 00000000..d04abfc5 --- /dev/null +++ b/api/rul_adapt/construct/adarul/index.html @@ -0,0 +1,1804 @@ + + + + + + + + + + + + + + + + + + + + + + + + + adarul - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

adarul

+ +
+ + + + +
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/construct/cnn_dann/functional/index.html b/api/rul_adapt/construct/cnn_dann/functional/index.html new file mode 100644 index 00000000..9f1afbc4 --- /dev/null +++ b/api/rul_adapt/construct/cnn_dann/functional/index.html @@ -0,0 +1,2132 @@ + + + + + + + + + + + + + + + + + + + + + + + + + functional - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

functional

+ +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ cnn_dann_from_config(config, **trainer_kwargs) + +

+ + +
+ +

Construct a CNN-DANN approach from a configuration.

+

The configuration can be created by calling get_cnn_dann_config.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
config + DictConfig + +
+

The CNN-DANN configuration.

+
+
+ required +
trainer_kwargs + Any + +
+

Overrides for the trainer class.

+
+
+ {} +
+

Returns: + dm: The data module for adaption of two CMAPSS sub-datasets. + dann: The DANN approach with feature extractor, regressor and domain disc. + trainer: The trainer object.

+ +
+ +
+ + +
+ + + +

+ get_cnn_dann(source_fd, target_fd, **trainer_kwargs) + +

+ + +
+ +

Construct an CNN-DANN approach for CMAPSS with the original hyperparameters.

+

The adaption tasks 1-->4, 2-->3, 3-->2 and 4-->1 are missing because they were not +investigated in the paper.

+ + + +

Examples:

+
>>> import rul_adapt
+>>> dm, dann, trainer = rul_adapt.construct.get_cnn_dann(3, 1)
+>>> trainer.fit(dann, dm)
+>>> trainer.test(dann, dm)
+
+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
source_fd + int + +
+

The source FD of CMAPSS.

+
+
+ required +
target_fd + int + +
+

The target FD of CMAPSS.

+
+
+ required +
trainer_kwargs + Any + +
+

Overrides for the trainer class.

+
+
+ {} +
+

Returns: + dm: The data module for adaption of two CMAPSS sub-datasets. + dann: The DANN approach with feature extractor, regressor and domain disc. + trainer: The trainer object.

+ +
+ +
+ + +
+ + + +

+ get_cnn_dann_config(source_fd, target_fd) + +

+ + +
+ +

Get a configuration for the CNN-DANN approach.

+

The adaption tasks 1-->4, 2-->3, 3-->2 and 4-->1 are missing because they were +not investigated in the paper. The configuration can be modified and fed to +cnn_dann_from_config to +create the approach.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
source_fd + int + +
+

The source FD of CMAPSS.

+
+
+ required +
target_fd + int + +
+

The target FD of CMAPSS.

+
+
+ required +
+

Returns: + The CNN-DANN configuration.

+ +
+ +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/construct/cnn_dann/index.html b/api/rul_adapt/construct/cnn_dann/index.html new file mode 100644 index 00000000..dd625d43 --- /dev/null +++ b/api/rul_adapt/construct/cnn_dann/index.html @@ -0,0 +1,1804 @@ + + + + + + + + + + + + + + + + + + + + + + + + + cnn_dann - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

cnn_dann

+ +
+ + + + +
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/construct/consistency/functional/index.html b/api/rul_adapt/construct/consistency/functional/index.html new file mode 100644 index 00000000..ad96388b --- /dev/null +++ b/api/rul_adapt/construct/consistency/functional/index.html @@ -0,0 +1,2184 @@ + + + + + + + + + + + + + + + + + + + + + + + + + functional - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

functional

+ +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ consistency_dann_from_config(config, pre_trainer_kwargs=None, trainer_kwargs=None) + +

+ + +
+ +

Construct a Consistency DANN approach from a configuration. +The configuration can be created by calling get_consistency_dann_config.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
config + DictConfig + +
+

The Consistency DANN config.

+
+
+ required +
pre_trainer_kwargs + Optional[Dict[str, Any]] + +
+

Overrides for the pre-training trainer class.

+
+
+ None +
trainer_kwargs + Optional[Dict[str, Any]] + +
+

Overrides for the main trainer class.

+
+
+ None +
+

Returns: + pre: The data module, approach and trainer for the pre-training stage + main: The data module, approach, domain discriminator and trainer for + the main stage

+ +
+ +
+ + +
+ + + +

+ get_consistency_dann(dataset, source_fd, target_fd, pre_trainer_kwargs=None, trainer_kwargs=None) + +

+ + +
+ +

Construct a Consistency DANN approach with the original hyperparameters.

+ + + +

Examples:

+
>>> import rul_adapt
+>>> pre, main = rul_adapt.construct.get_consistency_dann("cmapss", 3, 1)
+>>> pre_dm, pre_approach, pre_trainer = pre
+>>> dm, approach, domain_disc, trainer = main
+
+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
dataset + Literal['cmapss', 'xjtu-sy'] + +
+

The name of the dataset, either cmapss or xjtu-sy.

+
+
+ required +
source_fd + int + +
+

The source FD of CMAPSS.

+
+
+ required +
target_fd + int + +
+

The target FD of CMAPSS.

+
+
+ required +
pre_trainer_kwargs + Optional[Dict[str, Any]] + +
+

Overrides for the pre-training trainer class.

+
+
+ None +
trainer_kwargs + Optional[Dict[str, Any]] + +
+

Overrides for the main trainer class.

+
+
+ None +
+

Returns: + pre: The data module, approach and trainer for the pre-training stage + main: The data module, approach, domain discriminator and trainer for + the main stage

+ +
+ +
+ + +
+ + + +

+ get_consistency_dann_config(dataset, source_fd, target_fd) + +

+ + +
+ +

Get a configuration for the Consistency DANN approach.

+

The configuration can be modified and fed to consistency_dann_from_config to create the +approach.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
dataset + Literal['cmapss', 'xjtu-sy'] + +
+

The name of the dataset, either cmapss or xjtu-sy.

+
+
+ required +
source_fd + int + +
+

The source FD of CMAPSS.

+
+
+ required +
target_fd + int + +
+

The target FD of CMAPSS.

+
+
+ required +
+

Returns: + The Consistency DANN configuration.

+ +
+ +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/construct/consistency/index.html b/api/rul_adapt/construct/consistency/index.html new file mode 100644 index 00000000..57f56a3b --- /dev/null +++ b/api/rul_adapt/construct/consistency/index.html @@ -0,0 +1,1804 @@ + + + + + + + + + + + + + + + + + + + + + + + + + consistency - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

consistency

+ +
+ + + + +
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/construct/index.html b/api/rul_adapt/construct/index.html new file mode 100644 index 00000000..d43eb666 --- /dev/null +++ b/api/rul_adapt/construct/index.html @@ -0,0 +1,1802 @@ + + + + + + + + + + + + + + + + + + + + + + + + + construct - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

construct

+ +
+ + + + +
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/construct/latent_align/functional/index.html b/api/rul_adapt/construct/latent_align/functional/index.html new file mode 100644 index 00000000..c5059129 --- /dev/null +++ b/api/rul_adapt/construct/latent_align/functional/index.html @@ -0,0 +1,2188 @@ + + + + + + + + + + + + + + + + + + + + + + + + + functional - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

functional

+ +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ get_latent_align(dataset, source_fd, target_fd, xjtu_sy_subtask=None, **trainer_kwargs) + +

+ + +
+ +

Construct a Latent Alignment approach for the selected dataset with the original +hyperparameters.

+

For the XJTU-SY task only FD001 and FD002 are available. The subtask controls if +the bearing with the id 1 or 2 is used as the target data.

+ + + +

Examples:

+
>>> import rul_adapt
+>>> dm, latent, trainer = rul_adapt.construct.get_latent_align("cmapss", 3, 1)
+>>> trainer.fit(latent, dm)
+>>> trainer.test(latent, dm)
+
+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
dataset + Literal['cmapss', 'xjtu-sy'] + +
+

The dataset to use.

+
+
+ required +
source_fd + int + +
+

The source FD.

+
+
+ required +
target_fd + int + +
+

The target FD.

+
+
+ required +
xjtu_sy_subtask + Optional[int] + +
+

The subtask for the XJTU-SY (either 1 or 2).

+
+
+ None +
trainer_kwargs + Any + +
+

Overrides for the trainer class.

+
+
+ {} +
+

Returns: + dm: The data module for adaption of the sub-datasets. + dann: The Latent Alignment approach with feature extractor and regressor. + trainer: The trainer object.

+ +
+ +
+ + +
+ + + +

+ get_latent_align_config(dataset, source_fd, target_fd, xjtu_sy_subtask=None) + +

+ + +
+ +

Get a configuration for the Latent Alignment approach.

+

For the XJTU-SY task only FD001 and FD002 are available. The subtask controls if +the bearing with the id 1 or 2 is used as the target data. The configuration can +be modified and fed to latent_align_from_config to create the approach.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
dataset + Literal['cmapss', 'xjtu-sy'] + +
+

The dataset to use.

+
+
+ required +
source_fd + int + +
+

The source FD.

+
+
+ required +
target_fd + int + +
+

The target FD.

+
+
+ required +
xjtu_sy_subtask + Optional[int] + +
+

The subtask for the XJTU-SY (either 1 or 2).

+
+
+ None +
+

Returns: + The Latent Alignment configuration.

+ +
+ +
+ + +
+ + + +

+ latent_align_from_config(config, **trainer_kwargs) + +

+ + +
+ +

Construct a Latent Alignment approach from a configuration.

+

The configuration can be created by calling get_latent_align_config.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
config + DictConfig + +
+

The Latent Alignment configuration.

+
+
+ required +
trainer_kwargs + Any + +
+

Overrides for the trainer class.

+
+
+ {} +
+

Returns: + dm: The data module for adaption of the sub-datasets. + dann: The Latent Alignment approach with feature extractor, regressor. + trainer: The trainer object.

+ +
+ +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/construct/latent_align/index.html b/api/rul_adapt/construct/latent_align/index.html new file mode 100644 index 00000000..669dba83 --- /dev/null +++ b/api/rul_adapt/construct/latent_align/index.html @@ -0,0 +1,1804 @@ + + + + + + + + + + + + + + + + + + + + + + + + + latent_align - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

latent_align

+ +
+ + + + +
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/construct/lstm_dann/functional/index.html b/api/rul_adapt/construct/lstm_dann/functional/index.html new file mode 100644 index 00000000..454685de --- /dev/null +++ b/api/rul_adapt/construct/lstm_dann/functional/index.html @@ -0,0 +1,2127 @@ + + + + + + + + + + + + + + + + + + + + + + + + + functional - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

functional

+ +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ get_lstm_dann(source_fd, target_fd, **trainer_kwargs) + +

+ + +
+ +

Construct an LSTM-DANN approach for CMAPSS with the original hyperparameters.

+ + + +

Examples:

+
>>> import rul_adapt
+>>> dm, dann, trainer = rul_adapt.construct.get_lstm_dann(3, 1)
+>>> trainer.fit(dann, dm)
+>>> trainer.test(dann, dm)
+
+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
source_fd + int + +
+

The source FD of CMAPSS.

+
+
+ required +
target_fd + int + +
+

The target FD of CMAPSS.

+
+
+ required +
trainer_kwargs + Any + +
+

Overrides for the trainer class.

+
+
+ {} +
+

Returns: + dm: The data module for adaption of two CMAPSS sub-datasets. + dann: The DANN approach with feature extractor, regressor and domain disc. + trainer: The trainer object.

+ +
+ +
+ + +
+ + + +

+ get_lstm_dann_config(source_fd, target_fd) + +

+ + +
+ +

Get a configuration for the LSTM-DANN approach.

+

The configuration can be modified and fed to lstm_dann_from_config to create the approach.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
source_fd + int + +
+

The source FD of CMAPSS.

+
+
+ required +
target_fd + int + +
+

The target FD of CMAPSS.

+
+
+ required +
+

Returns: + The LSTM-DANN configuration.

+ +
+ +
+ + +
+ + + +

+ lstm_dann_from_config(config, **trainer_kwargs) + +

+ + +
+ +

Construct a LSTM-DANN approach from a configuration.

+

The configuration can be created by calling get_lstm_dann_config.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
config + DictConfig + +
+

The LSTM-DANN configuration.

+
+
+ required +
trainer_kwargs + Any + +
+

Overrides for the trainer class.

+
+
+ {} +
+

Returns: + dm: The data module for adaption of two CMAPSS sub-datasets. + dann: The DANN approach with feature extractor, regressor and domain disc. + trainer: The trainer object.

+ +
+ +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/construct/lstm_dann/index.html b/api/rul_adapt/construct/lstm_dann/index.html new file mode 100644 index 00000000..0442d589 --- /dev/null +++ b/api/rul_adapt/construct/lstm_dann/index.html @@ -0,0 +1,1804 @@ + + + + + + + + + + + + + + + + + + + + + + + + + lstm_dann - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

lstm_dann

+ +
+ + + + +
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/construct/tbigru/functional/index.html b/api/rul_adapt/construct/tbigru/functional/index.html new file mode 100644 index 00000000..06231a43 --- /dev/null +++ b/api/rul_adapt/construct/tbigru/functional/index.html @@ -0,0 +1,2127 @@ + + + + + + + + + + + + + + + + + + + + + + + + + functional - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

functional

+ +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ get_tbigru(source_fd, target_fd, **trainer_kwargs) + +

+ + +
+ +

Construct a TBiGRU approach for FEMTO with the original hyperparameters.

+ + + +

Examples:

+
>>> import rul_adapt
+>>> dm, tbigru, trainer = rul_adapt.construct.get_tbigru(3, 1)
+>>> trainer.fit(tbigru, dm)
+>>> trainer.test(tbigru, dm)
+
+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
source_fd + int + +
+

The source FD of FEMTO.

+
+
+ required +
target_fd + int + +
+

The target FD of FEMTO.

+
+
+ required +
trainer_kwargs + Any + +
+

Overrides for the trainer class.

+
+
+ {} +
+

Returns: + dm: The data module for adaption of two FEMTO sub-datasets. + dann: The TBiGRU approach with feature extractor and regressor. + trainer: The trainer object.

+ +
+ +
+ + +
+ + + +

+ get_tbigru_config(source_fd, target_fd) + +

+ + +
+ +

Get a configuration for the TBiGRU approach.

+

The configuration can be modified and fed to tbigru_from_config to create the approach.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
source_fd + int + +
+

The source FD of FEMTO.

+
+
+ required +
target_fd + int + +
+

The target FD of FEMTO.

+
+
+ required +
+

Returns: + The TBiGRU configuration.

+ +
+ +
+ + +
+ + + +

+ tbigru_from_config(config, **trainer_kwargs) + +

+ + +
+ +

Construct a TBiGRU approach from a configuration. +The configuration can be created by calling get_tbigru_config.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
config + DictConfig + +
+

The TBiGRU configuration.

+
+
+ required +
trainer_kwargs + Any + +
+

Overrides for the trainer class.

+
+
+ {} +
+

Returns: + dm: The data module for adaption of two FEMTO sub-datasets. + dann: The TBiGRU approach with feature extractor and regressor. + trainer: The trainer object.

+ +
+ +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/construct/tbigru/index.html b/api/rul_adapt/construct/tbigru/index.html new file mode 100644 index 00000000..c596995a --- /dev/null +++ b/api/rul_adapt/construct/tbigru/index.html @@ -0,0 +1,1804 @@ + + + + + + + + + + + + + + + + + + + + + + + + + tbigru - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

tbigru

+ +
+ + + + +
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/loss/adaption/index.html b/api/rul_adapt/loss/adaption/index.html new file mode 100644 index 00000000..11bbba19 --- /dev/null +++ b/api/rul_adapt/loss/adaption/index.html @@ -0,0 +1,2703 @@ + + + + + + + + + + + + + + + + + + + + + + + + + adaption - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

adaption

+ +
+ + + + +
+ +

A module for unsupervised domain adaption losses.

+ + + +
+ + + + + + + + +
+ + + +

+ DomainAdversarialLoss + + +

+ + +
+

+ Bases: Metric

+ + +

The Domain Adversarial Neural Network Loss (DANN) uses a domain discriminator +to measure the distance between two feature distributions.

+

The domain discriminator is a neural network that is jointly trained on +classifying its input as one of two domains. Its output should be a single +unscaled score (logit) which is fed to a binary cross entropy loss.

+

The domain discriminator is preceded by a GradientReversalLayer. This way, the discriminator is +trained to separate the domains while the network generating the inputs is +trained to marginalize the domain difference.

+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__(domain_disc) + +

+ + +
+ +

Create a new DANN loss module.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
domain_disc + Module + +
+

The neural network to act as the domain discriminator.

+
+
+ required +
+ +
+ +
+ + +
+ + + +

+ update(source, target) + +

+ + +
+ +

Calculate the DANN loss as the binary cross entropy of the discriminators +prediction for the source and target features.

+

The source features receive a domain label of zero and the target features a +domain label of one.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
source + Tensor + +
+

The source features with domain label zero.

+
+
+ required +
target + Tensor + +
+

The target features with domain label one.

+
+
+ required +
+ +
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ GradientReversalLayer + + +

+ + +
+

+ Bases: Module

+ + +

The gradient reversal layer (GRL) acts as an identity function in the forward +pass and scales the gradient by a negative scalar in the backward pass.

+
GRL(f(x)) = f(x)
+GRL`(f(x)) = -lambda * f`(x)
+
+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__(grad_weight=1.0) + +

+ + +
+ +

Create a new Gradient Reversal Layer.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
grad_weight + float + +
+

The scalar that weights the negative gradient.

+
+
+ 1.0 +
+ +
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ JointMaximumMeanDiscrepancyLoss + + +

+ + +
+

+ Bases: Metric

+ + +

The Joint Maximum Mean Discrepancy Loss (JMMD) is a distance measure between +multiple pairs of arbitrary distributions.

+

It is related to the MMD insofar as the distance of each distribution pair in a +reproducing Hilbert kernel space (RHKS) is calculated and then multiplied before +the discrepancy is computed.

+
joint_rhks(xs, ys) = prod(rhks(x, y) for x, y in zip(xs, xs))
+
+

For more information see +MaximumMeanDiscrepancyLoss.

+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__() + +

+ + +
+ +

Create a new JMMD loss module.

+

It features a single Gaussian kernel with a bandwidth chosen by the median +heuristic.

+ +
+ +
+ + +
+ + + +

+ update(source_features, target_features) + +

+ + +
+ +

Compute the JMMD loss between multiple feature distributions.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
source_features + List[Tensor] + +
+

The list of source features of shape + [batch_size, num_features].

+
+
+ required +
target_features + List[Tensor] + +
+

The list of target features of shape + [batch_size, num_features].

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ None + +
+

scalar JMMD loss

+
+
+ +
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ MaximumMeanDiscrepancyLoss + + +

+ + +
+

+ Bases: Metric

+ + +

The Maximum Mean Discrepancy Loss (MMD) is a distance measure between two +arbitrary distributions.

+

The distance is defined as the dot product in a reproducing Hilbert kernel space +(RHKS) and is zero if and only if the distributions are identical. The RHKS is +the space of the linear combination of multiple Gaussian kernels with bandwidths +derived by the median heuristic.

+

The source and target feature batches are treated as samples from their +respective distribution. The linear pairwise distances between the two batches +are transformed into distances in the RHKS via the kernel trick:

+
rhks(x, y) = dot(to_rhks(x), to_rhks(y)) = multi_kernel(dot(x, y))
+multi_kernel(distance) = mean([gaussian(distance, bw) for bw in bandwidths])
+gaussian(distance, bandwidth) = exp(-distance * bandwidth)
+
+

The n kernels will use bandwidths between median / (2**(n/ 2)) and median * ( +2**(n / 2)), where median is the median of the linear distances.

+

The MMD loss is then calculated as:

+
mean(rhks(source, source) + rhks(target, target) - 2 * rhks(source, target))
+
+

This version of MMD is biased, which is acceptable for training purposes.

+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__(num_kernels) + +

+ + +
+ +

Create a new MMD loss module with n kernels.

+

The bandwidths of the Gaussian kernels are derived by the median heuristic.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
num_kernels + int + +
+

Number of Gaussian kernels to use.

+
+
+ required +
+ +
+ +
+ + +
+ + + +

+ update(source_features, target_features) + +

+ + +
+ +

Compute the MMD loss between source and target feature distributions.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
source_features + Tensor + +
+

Source features with shape [batch_size, num_features]

+
+
+ required +
target_features + Tensor + +
+

Target features with shape [batch_size, num_features]

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ None + +
+

scalar MMD loss

+
+
+ +
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/loss/alignment/index.html b/api/rul_adapt/loss/alignment/index.html new file mode 100644 index 00000000..045b2d7b --- /dev/null +++ b/api/rul_adapt/loss/alignment/index.html @@ -0,0 +1,2074 @@ + + + + + + + + + + + + + + + + + + + + + + + + + alignment - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+ +
+ + + +
+
+ + + + + + + +

alignment

+ +
+ + + + +
+ +

These losses are used to create a latent space that is conductive to RUL +estimation. They are mainly used by the LatentAlignmentApproach.

+ + + +
+ + + + + + + + +
+ + + +

+ DegradationDirectionAlignmentLoss + + +

+ + +
+

+ Bases: Metric

+ + +

This loss is used to align the direction of the degradation data in relation to +the healthy state data in the latent space.

+

It computes the mean of the cosine of the pairwise-angle of the vectors from the +healthy state cluster to each degradation data point. The healthy state cluster +location is assumed to be the mean of the healthy state data in the latent space. +The loss is negated in order to maximize the cosine by minimizing the loss.

+

The loss is implemented as a torchmetrics.Metric. See their documentation for more information.

+ + + +

Examples:

+
>>> from rul_adapt.loss.alignment import DegradationDirectionAlignmentLoss
+>>> degradation_align = DegradationDirectionAlignmentLoss()
+>>> degradation_align(torch.zeros(10, 5), torch.ones(10, 5))
+tensor(-1.0000)
+
+ + + + +
+ + + + + + + + + + + +
+ +
+ + +
+ +
+ + + +

+ DegradationLevelRegularizationLoss + + +

+ + +
+

+ Bases: Metric

+ + +

This loss is used to regularize the degradation level of the data in the latent +space in relation to the healthy state data.

+

It computes the mean of the difference between the normalized distance of the +degradation data points from the healthy state cluster and the normalized +degradation steps. The healthy state cluster location is assumed to be the mean +of the healthy state data in the latent space.

+

The loss is implemented as a torchmetrics.Metric. See their documentation for more information.

+ + + +

Examples:

+
>>> from rul_adapt.loss.alignment import DegradationLevelRegularizationLoss
+>>> degradation_align = DegradationLevelRegularizationLoss()
+>>> degradation_align(torch.zeros(10, 5),
+...                   torch.ones(10, 5),
+...                   torch.ones(10),
+...                   torch.ones(10, 5),
+...                   torch.ones(10))
+tensor(0.)
+
+ + + + +
+ + + + + + + + + + + +
+ +
+ + +
+ +
+ + + +

+ HealthyStateAlignmentLoss + + +

+ + +
+

+ Bases: Metric

+ + +

This loss is used to align the healthy state of the data in the latent space.

+

It computes the mean of the variance of each latent feature which is supposed to +be minimized. This way a single compact cluster of healthy state data should be +formed.

+

The loss is implemented as a torchmetrics.Metric. See their documentation for more information.

+ + + +

Examples:

+
>>> from rul_adapt.loss.alignment import HealthyStateAlignmentLoss
+>>> healthy_align = HealthyStateAlignmentLoss()
+>>> healthy_align(torch.zeros(10, 5))
+tensor(0.)
+
+ + + + +
+ + + + + + + + + + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/loss/conditional/index.html b/api/rul_adapt/loss/conditional/index.html new file mode 100644 index 00000000..d432ba60 --- /dev/null +++ b/api/rul_adapt/loss/conditional/index.html @@ -0,0 +1,2195 @@ + + + + + + + + + + + + + + + + + + + + + + + + + conditional - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

conditional

+ +
+ + + + +
+ +

A module for conditional unsupervised domain adaption losses.

+ + + +
+ + + + + + + + +
+ + + +

+ ConditionalAdaptionLoss + + +

+ + +
+

+ Bases: Metric

+ + +

The Conditional Adaptions loss is a combination of multiple losses, each of +which is only applied to a subset of the incoming data.

+

The subsets are defined by fuzzy sets with a rectangular membership function. The +prediction for each sample is checked against the fuzzy sets, and the +corresponding loss is applied to the sample. The combined loss can be set as the +sum of all components or their mean.

+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__(adaption_losses, fuzzy_sets, mean_over_sets=True) + +

+ + +
+ +

Create a new Conditional Adaption loss over fuzzy sets.

+

The fuzzy sets' boundaries are inclusive on the left and exclusive on the right. +The left boundary is supposed to be smaller than the right boundary.

+

This loss should not be used as a way to accumulate its value over multiple +batches.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
adaption_losses + Sequence[Metric] + +
+

The list of losses to be applied to the subsets.

+
+
+ required +
fuzzy_sets + List[Tuple[float, float]] + +
+

The fuzzy sets to be used for subset membership.

+
+
+ required +
mean_over_sets + bool + +
+

Whether to take the mean or the sum of the losses.

+
+
+ True +
+ +
+ +
+ + +
+ + + +

+ compute() + +

+ + +
+ +

Compute the loss as either the sum or mean of all subset losses.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ Tensor + +
+

The combined loss.

+
+
+ +
+ +
+ + +
+ + + +

+ update(source, source_preds, target, target_preds) + +

+ + +
+ +

Update the loss with the given data.

+

The predictions for the source and target data are checked against the fuzzy +sets to determine membership.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
source + Tensor + +
+

The source features.

+
+
+ required +
source_preds + Tensor + +
+

The predictions for the source features.

+
+
+ required +
target + Tensor + +
+

The target features.

+
+
+ required +
target_preds + Tensor + +
+

The predictions for the target features.

+
+
+ required +
+ +
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/loss/index.html b/api/rul_adapt/loss/index.html new file mode 100644 index 00000000..aa614495 --- /dev/null +++ b/api/rul_adapt/loss/index.html @@ -0,0 +1,1802 @@ + + + + + + + + + + + + + + + + + + + + + + + + + loss - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

loss

+ +
+ + + + +
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/loss/rul/index.html b/api/rul_adapt/loss/rul/index.html new file mode 100644 index 00000000..376b7a47 --- /dev/null +++ b/api/rul_adapt/loss/rul/index.html @@ -0,0 +1,1847 @@ + + + + + + + + + + + + + + + + + + + + + + + + + rul - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

rul

+ +
+ + + + +
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/loss/utils/index.html b/api/rul_adapt/loss/utils/index.html new file mode 100644 index 00000000..2549d287 --- /dev/null +++ b/api/rul_adapt/loss/utils/index.html @@ -0,0 +1,1847 @@ + + + + + + + + + + + + + + + + + + + + + + + + + utils - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

utils

+ +
+ + + + +
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/model/cnn/index.html b/api/rul_adapt/model/cnn/index.html new file mode 100644 index 00000000..245ef774 --- /dev/null +++ b/api/rul_adapt/model/cnn/index.html @@ -0,0 +1,2193 @@ + + + + + + + + + + + + + + + + + + + + + + + + + cnn - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

cnn

+ +
+ + + + +
+ +

A module of feature extractors based on convolutional neural networks.

+ + + +
+ + + + + + + + +
+ + + +

+ CnnExtractor + + +

+ + +
+

+ Bases: Module

+ + +

A Convolutional Neural Network (CNN) based network that extracts a feature +vector from same-length time windows.

+

This feature extractor consists of multiple CNN layers and an optional fully +connected (FC) layer. Each CNN layer can be configured with a number of filters +and a kernel size. Additionally, batch normalization, same-padding and dropout +can be applied. The fully connected layer can have a separate dropout +probability.

+

Both CNN and FC layers use ReLU activation functions by default. Custom +activation functions can be set for each layer type.

+

The data flow is as follows: Input --> CNN x n --> [FC] --> Output

+

The expected input shape is [batch_size, num_features, window_size]. The output +of this network is always flattened to [batch_size, num_extracted_features].

+

Examples:

+
Without FC
+>>> import torch
+>>> from rul_adapt.model import CnnExtractor
+>>> cnn = CnnExtractor(14,units=[16, 1],seq_len=30)
+>>> cnn(torch.randn(10, 14, 30)).shape
+torch.Size([10, 26])
+
+With FC
+>>> import torch
+>>> from rul_adapt.model import CnnExtractor
+>>> cnn = CnnExtractor(14,units=[16, 1],seq_len=30,fc_units=16)
+>>> cnn(torch.randn(10, 14, 30)).shape
+torch.Size([10, 16])
+
+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__(input_channels, units, seq_len, kernel_size=3, dilation=1, stride=1, padding=False, fc_units=None, dropout=0.0, fc_dropout=0.0, batch_norm=False, act_func=nn.ReLU, fc_act_func=nn.ReLU) + +

+ + +
+ +

Create a new CNN-based feature extractor.

+

The units are the number of output filters for each CNN layer. The +seq_len is needed to calculate the input units for the FC layer. The kernel +size of each CNN layer can be set by passing a list to kernel_size. If an +integer is passed, each layer has the same kernel size. If padding is true, +same-padding is applied before each CNN layer, which keeps the window_size +the same. If batch_norm is set, batch normalization is applied for each CNN +layer. If fc_units is set, a fully connected layer is appended.

+

Dropout can be applied to each CNN layer by setting conv_dropout to a +number greater than zero. The same is valid for the fully connected layer and +fc_dropout. Dropout will never be applied to the input layer.

+

The whole network uses ReLU activation functions. This can be customized by +setting either conv_act_func or fc_act_func.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
input_channels + int + +
+

The number of input channels.

+
+
+ required +
units + List[int] + +
+

The list of output filters for the CNN layers.

+
+
+ required +
seq_len + int + +
+

The window_size of the input data.

+
+
+ required +
kernel_size + Union[int, List[int]] + +
+

The kernel size for the CNN layers. Passing an integer uses + the same kernel size for each layer.

+
+
+ 3 +
dilation + int + +
+

The dilation for the CNN layers.

+
+
+ 1 +
stride + int + +
+

The stride for the CNN layers.

+
+
+ 1 +
padding + bool + +
+

Whether to apply same-padding before each CNN layer.

+
+
+ False +
fc_units + Optional[int] + +
+

Number of output units for the fully connected layer.

+
+
+ None +
dropout + float + +
+

The dropout probability for the CNN layers.

+
+
+ 0.0 +
fc_dropout + float + +
+

The dropout probability for the fully connected layer.

+
+
+ 0.0 +
batch_norm + bool + +
+

Whether to use batch normalization on the CNN layers.

+
+
+ False +
act_func + Type[Module] + +
+

The activation function for the CNN layers.

+
+
+ ReLU +
fc_act_func + Type[Module] + +
+

The activation function for the fully connected layer.

+
+
+ ReLU +
+ +
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/model/head/index.html b/api/rul_adapt/model/head/index.html new file mode 100644 index 00000000..3fbcf89b --- /dev/null +++ b/api/rul_adapt/model/head/index.html @@ -0,0 +1,2084 @@ + + + + + + + + + + + + + + + + + + + + + + + + + head - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

head

+ +
+ + + + +
+ +

A module for network working as a regression or classification head.

+ + + +
+ + + + + + + + +
+ + + +

+ FullyConnectedHead + + +

+ + +
+

+ Bases: Module

+ + +

A fully connected (FC) network that can be used as a RUL regressor or a domain +discriminator.

+

This network is a stack of fully connected layers with ReLU activation functions +by default. The activation function can be customized through the act_func +parameter. If the last layer of the network should not have an activation +function, act_func_on_last_layer can be set to False.

+

The data flow is as follows: Inputs --> FC x n --> Outputs

+

The expected input shape is [batch_size, num_features].

+ + + +

Examples:

+

Default

+
>>> import torch
+>>> from rul_adapt.model import FullyConnectedHead
+>>> regressor = FullyConnectedHead(32, [16, 1])
+>>> outputs = regressor(torch.randn(10, 32))
+>>> outputs.shape
+torch.Size([10, 1])
+>>> type(outputs.grad_fn)
+<class 'ReluBackward0'>
+
+

Custom activation function

+
>>> import torch
+>>> from rul_adapt.model import FullyConnectedHead
+>>> regressor = FullyConnectedHead(32, [16, 1], act_func=torch.nn.Sigmoid)
+>>> outputs = regressor(torch.randn(10, 32))
+>>> type(outputs.grad_fn)
+<class 'SigmoidBackward0'>
+
+

Without activation function on last layer

+
>>> import torch
+>>> from rul_adapt.model import FullyConnectedHead
+>>> regressor = FullyConnectedHead(32, [16, 1], act_func_on_last_layer=False)
+>>> outputs = regressor(torch.randn(10, 32))
+>>> type(outputs.grad_fn)
+<class 'AddmmBackward0'>
+
+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__(input_channels, units, dropout=0.0, act_func=nn.ReLU, act_func_on_last_layer=True) + +

+ + +
+ +

Create a new fully connected head network.

+

The units are the number of output units for each FC layer. The number of +output features is units[-1]. If dropout is used, it is applied in each +layer, including input.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
input_channels + int + +
+

The number of input channels.

+
+
+ required +
units + List[int] + +
+

The number of output units for the FC layers.

+
+
+ required +
dropout + float + +
+

The dropout probability before each layer. Set to zero to + deactivate.

+
+
+ 0.0 +
act_func + Type[Module] + +
+

The activation function for each layer.

+
+
+ ReLU +
act_func_on_last_layer + bool + +
+

Whether to add the activation function to the last + layer.

+
+
+ True +
+ +
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/model/index.html b/api/rul_adapt/model/index.html new file mode 100644 index 00000000..68111199 --- /dev/null +++ b/api/rul_adapt/model/index.html @@ -0,0 +1,1826 @@ + + + + + + + + + + + + + + + + + + + + + + + + + model - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

model

+ +
+ + + + +
+ +

This module contains the necessary neural networks to build a RUL estimator.

+

In general, a RUL estimator network consists of two parts: a feature extractor and a +regression head. The feature extractor is a network that transforms the input feature +windows into a latent feature vector. The regression head maps these latent features +to a scalar RUL value. The feature extractors can be found in the cnn and rnn modules. The regression head in +the head module.

+

Some domain adaption approaches use a domain discriminator. The networks in the +head module can be used to construct them, too.

+ + + +

Examples:

+
>>> import torch
+>>> from rul_adapt import model
+>>> feature_extractor = model.CnnExtractor(14,[32, 16],30,fc_units=8)
+>>> regressor = model.FullyConnectedHead(8, [4, 1])
+>>> latent_features = feature_extractor(torch.randn(10, 14, 30))
+>>> latent_features.shape
+torch.Size([10, 8])
+>>> rul = regressor(latent_features)
+>>> rul.shape
+torch.Size([10, 1])
+
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/model/rnn/index.html b/api/rul_adapt/model/rnn/index.html new file mode 100644 index 00000000..e11d4c9f --- /dev/null +++ b/api/rul_adapt/model/rnn/index.html @@ -0,0 +1,2302 @@ + + + + + + + + + + + + + + + + + + + + + + + + + rnn - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

rnn

+ +
+ + + + +
+ +

A module of feature extractors based on recurrent neural networks.

+ + + +
+ + + + + + + + +
+ + + +

+ GruExtractor + + +

+ + +
+

+ Bases: Module

+ + +

A Gated Recurrent Unit (GRU) based network that extracts a feature vector +from same-length time windows.

+

This feature extractor consists of multiple fully connected (FC) layers with +a ReLU activation functions and a multi-layer GRU. The GRU layers can be +configured as bidirectional. Dropout can be applied separately to the GRU +layers.

+

The data flow is as follows: Input --> FC x n --> GRU x m --> Output

+

The expected input shape is [batch_size, num_features, window_size].

+ + + +

Examples:

+
>>> import torch
+>>> from rul_adapt.model import GruExtractor
+>>> gru = GruExtractor(input_channels=14, fc_units=[16, 8], gru_units=[8])
+>>> gru(torch.randn(10, 14, 30)).shape
+torch.Size([10, 8])
+
+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__(input_channels, fc_units, gru_units, gru_dropout=0.0, bidirectional=False) + +

+ + +
+ +

Create a new GRU-based feature extractor.

+

The fc_units are the output units for each fully connected layer +and gru_units for each LSTM layer. If bidirectional is set to True, +a BiGRU is used and the output units are doubled. The number of output +features of this network is either gru_units[-1] by default, or 2 * +gru_units[ -1] if bidirectional is set.

+

Dropout can be applied to each GRU layer by setting lstm_dropout to a +number greater than zero.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
input_channels + int + +
+

The number of input channels.

+
+
+ required +
fc_units + List[int] + +
+

The list of output units for the fully connected layers.

+
+
+ required +
gru_units + List[int] + +
+

The list of output units for the GRU layers

+
+
+ required +
gru_dropout + float + +
+

The dropout probability for the GRU layers.

+
+
+ 0.0 +
bidirectional + bool + +
+

Whether to use a BiGRU.

+
+
+ False +
+ +
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ LstmExtractor + + +

+ + +
+

+ Bases: Module

+ + +

A Long Short Term Memory (LSTM) based network that extracts a feature vector +from same-length time windows.

+

This feature extractor consists of a multi-layer LSTM and an optional fully +connected (FC) layer with a ReLU activation function. The LSTM layers can be +configured as bidirectional. Dropout can be applied separately to LSTM and FC +layers.

+

The data flow is as follows: Input --> LSTM x n --> [FC] --> Output

+

The expected input shape is [batch_size, num_features, window_size].

+

Examples:

+
Without FC
+>>> import torch
+>>> from rul_adapt.model import LstmExtractor
+>>> lstm = LstmExtractor(input_channels=14,units=[16, 16])
+>>> lstm(torch.randn(10, 14, 30)).shape
+torch.Size([10, 16])
+
+With FC
+>>> from rul_adapt.model import LstmExtractor
+>>> lstm = LstmExtractor(input_channels=14,units=[16, 16],fc_units=8)
+>>> lstm(torch.randn(10, 14, 30)).shape
+torch.Size([10, 8])
+
+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__(input_channels, units, fc_units=None, dropout=0.0, fc_dropout=0.0, bidirectional=False) + +

+ + +
+ +

Create a new LSTM-based feature extractor.

+

The units are the output units for each LSTM layer. If bidirectional +is set to True, a BiLSTM is used and the output units are doubled. If +fc_units is set, a fully connected layer is appended. The number of output +features of this network is either units[-1] by default, +2 * units[ -1] if bidirectional is set, or fc_units if it is set.

+

Dropout can be applied to each LSTM layer by setting lstm_dropout to a +number greater than zero. The same is valid for the fully connected layer and +fc_dropout.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
input_channels + int + +
+

The number of input channels.

+
+
+ required +
units + List[int] + +
+

The list of output units for the LSTM layers.

+
+
+ required +
fc_units + Optional[int] + +
+

The number of output units for the fully connected layer.

+
+
+ None +
dropout + float + +
+

The dropout probability for the LSTM layers.

+
+
+ 0.0 +
fc_dropout + float + +
+

The dropout probability for the fully connected layer.

+
+
+ 0.0 +
bidirectional + bool + +
+

Whether to use a BiLSTM.

+
+
+ False +
+ +
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/model/two_stage/index.html b/api/rul_adapt/model/two_stage/index.html new file mode 100644 index 00000000..64748dd3 --- /dev/null +++ b/api/rul_adapt/model/two_stage/index.html @@ -0,0 +1,2061 @@ + + + + + + + + + + + + + + + + + + + + + + + + + two_stage - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

two_stage

+ +
+ + + + +
+ + + +
+ + + + + + + + +
+ + + +

+ TwoStageExtractor + + +

+ + +
+

+ Bases: Module

+ + +

This module combines two feature extractors into a single network.

+

The input data is expected to be of shape [batch_size, upper_seq_len, +input_channels, lower_seq_len]. An example would be vibration data recorded in +spaced intervals, where lower_seq_len is the length of an interval and +upper_seq_len is the window size of a sliding window over the intervals.

+

The lower_stage is applied to each interval individually to extract features. +The upper_stage is then applied to the extracted features of the window. +The resulting feature vector should represent the window without the need to +manually extract features from the raw data of the intervals.

+ + + + +
+ + + + + + + + + + +
+ + + +

+ __init__(lower_stage, upper_stage) + +

+ + +
+ +

Create a new two-stage extractor.

+

The lower stage needs to take a tensor of shape [batch_size, input_channels, +seq_len] and return a tensor of shape [batch_size, lower_output_units]. The +upper stage needs to take a tensor of shape [batch_size, upper_seq_len, +lower_output_units] and return a tensor of shape [batch_size, +upper_output_units]. Args: lower_stage: upper_stage:

+ +
+ +
+ + +
+ + + +

+ forward(inputs) + +

+ + +
+ +

Apply the two-stage extractor to the input tensor.

+

The input tensor is expected to be of shape [batch_size, upper_seq_len, +input_channels, lower_seq_len]. The output tensor will be of shape +[batch_size, upper_output_units].

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
inputs + Tensor + +
+

the input tensor

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ Tensor + +
+

an output tensor of shape [batch_size, upper_output_units]

+
+
+ +
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/model/wrapper/index.html b/api/rul_adapt/model/wrapper/index.html new file mode 100644 index 00000000..5f3e463a --- /dev/null +++ b/api/rul_adapt/model/wrapper/index.html @@ -0,0 +1,1847 @@ + + + + + + + + + + + + + + + + + + + + + + + + + wrapper - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

wrapper

+ +
+ + + + +
+ + + +
+ + + + + + + + + + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/api/rul_adapt/utils/index.html b/api/rul_adapt/utils/index.html new file mode 100644 index 00000000..238fb215 --- /dev/null +++ b/api/rul_adapt/utils/index.html @@ -0,0 +1,2235 @@ + + + + + + + + + + + + + + + + + + + + + + + + + utils - RUL Adapt + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

utils

+ +
+ + + + +
+ + + +
+ + + + + + + + +
+ + + +

+ OptimizerFactory + + +

+ + +
+ + +

Factory for creating optimizers and schedulers.

+

After initialization, the factory can be called to create an optimizer with an +optional scheduler.

+ + + + +
+ + + + + + + + + + +
+ + + +

+ __call__(parameters) + +

+ + +
+ +

Create an optimizer with an optional scheduler for the given parameters.

+

The object returned by this method is a lightning optimizer config and can be +the return value of configure_optimizers.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
parameters + Iterable[Parameter] + +
+

The model parameters to optimize.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ OptimizerLRSchedulerConfig + +
+

A lightning optimizer config.

+
+
+ +
+ +
+ + +
+ + + +

+ __init__(optim_type='adam', lr=0.001, scheduler_type=None, **kwargs) + +

+ + +
+ +

Create a new factory to efficiently create optimizers and schedulers.

+

The factory creates an optimizer of the specified optim_type and adds an +optional scheduler of the specified scheduler_type. Additional keyword +arguments for the optimizer can be passed by adding the 'optim_' prefix and +for the scheduler by adding the 'scheduler_' prefix. The factory will ignore +any other keyword arguments.

+

Available optimizers are 'adam', 'sgd' and 'rmsprop'. Available schedulers +are 'step', 'cosine', 'linear' and 'lambda'.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
optim_type + str + +
+

The type of optimizer to create.

+
+
+ 'adam' +
lr + float + +
+

The learning rate to use.

+
+
+ 0.001 +
scheduler_type + Optional[str] + +
+

The optional type of scheduler to create.

+
+
+ None +
**kwargs + Any + +
+

Additional keyword arguments for the optimizer and scheduler.

+
+
+ {} +
+ +
+ +
+ + + +
+ +
+ + +
+ + + +
+ + + +

+ get_loss(loss_type) + +

+ + +
+ +

Get a loss instance by specifying a string.

+ +
+ +
+ + +
+ + + +

+ pairwise(iterable) + +

+ + +
+ +

s -> (s0,s1), (s1,s2), (s2, s3), ...

+ +
+ +
+ + +
+ + + +

+ str2callable(cls, restriction='') + +

+ + +
+ +

Dynamically import a callable from a string.

+ +
+ +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + +
+
+ + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/assets/_mkdocstrings.css b/assets/_mkdocstrings.css new file mode 100644 index 00000000..4b7d98b8 --- /dev/null +++ b/assets/_mkdocstrings.css @@ -0,0 +1,109 @@ + +/* Avoid breaking parameter names, etc. in table cells. */ +.doc-contents td code { + word-break: normal !important; +} + +/* No line break before first paragraph of descriptions. */ +.doc-md-description, +.doc-md-description>p:first-child { + display: inline; +} + +/* Max width for docstring sections tables. */ +.doc .md-typeset__table, +.doc .md-typeset__table table { + display: table !important; + width: 100%; +} + +.doc .md-typeset__table tr { + display: table-row; +} + +/* Defaults in Spacy table style. */ +.doc-param-default { + float: right; +} + +/* Symbols in Navigation and ToC. */ +:root, +[data-md-color-scheme="default"] { + --doc-symbol-attribute-fg-color: #953800; + --doc-symbol-function-fg-color: #8250df; + --doc-symbol-method-fg-color: #8250df; + --doc-symbol-class-fg-color: #0550ae; + --doc-symbol-module-fg-color: #5cad0f; + + --doc-symbol-attribute-bg-color: #9538001a; + --doc-symbol-function-bg-color: #8250df1a; + --doc-symbol-method-bg-color: #8250df1a; + --doc-symbol-class-bg-color: #0550ae1a; + --doc-symbol-module-bg-color: #5cad0f1a; +} + +[data-md-color-scheme="slate"] { + --doc-symbol-attribute-fg-color: #ffa657; + --doc-symbol-function-fg-color: #d2a8ff; + --doc-symbol-method-fg-color: #d2a8ff; + --doc-symbol-class-fg-color: #79c0ff; + --doc-symbol-module-fg-color: #baff79; + + --doc-symbol-attribute-bg-color: #ffa6571a; + --doc-symbol-function-bg-color: #d2a8ff1a; + --doc-symbol-method-bg-color: #d2a8ff1a; + --doc-symbol-class-bg-color: #79c0ff1a; + --doc-symbol-module-bg-color: #baff791a; +} + +code.doc-symbol { + border-radius: .1rem; + font-size: .85em; + padding: 0 .3em; + font-weight: bold; +} + +code.doc-symbol-attribute { + color: var(--doc-symbol-attribute-fg-color); + background-color: var(--doc-symbol-attribute-bg-color); +} + +code.doc-symbol-attribute::after { + content: "attr"; +} + +code.doc-symbol-function { + color: var(--doc-symbol-function-fg-color); + background-color: var(--doc-symbol-function-bg-color); +} + +code.doc-symbol-function::after { + content: "func"; +} + +code.doc-symbol-method { + color: var(--doc-symbol-method-fg-color); + background-color: var(--doc-symbol-method-bg-color); +} + +code.doc-symbol-method::after { + content: "meth"; +} + +code.doc-symbol-class { + color: var(--doc-symbol-class-fg-color); + background-color: var(--doc-symbol-class-bg-color); +} + +code.doc-symbol-class::after { + content: "class"; +} + +code.doc-symbol-module { + color: var(--doc-symbol-module-fg-color); + background-color: var(--doc-symbol-module-bg-color); +} + +code.doc-symbol-module::after { + content: "mod"; +} \ No newline at end of file diff --git a/assets/images/favicon.png b/assets/images/favicon.png new file mode 100644 index 0000000000000000000000000000000000000000..1cf13b9f9d978896599290a74f77d5dbe7d1655c GIT binary patch literal 1870 zcmV-U2eJ5xP)Gc)JR9QMau)O=X#!i9;T z37kk-upj^(fsR36MHs_+1RCI)NNu9}lD0S{B^g8PN?Ww(5|~L#Ng*g{WsqleV}|#l zz8@ri&cTzw_h33bHI+12+kK6WN$h#n5cD8OQt`5kw6p~9H3()bUQ8OS4Q4HTQ=1Ol z_JAocz`fLbT2^{`8n~UAo=#AUOf=SOq4pYkt;XbC&f#7lb$*7=$na!mWCQ`dBQsO0 zLFBSPj*N?#u5&pf2t4XjEGH|=pPQ8xh7tpx;US5Cx_Ju;!O`ya-yF`)b%TEt5>eP1ZX~}sjjA%FJF?h7cX8=b!DZl<6%Cv z*G0uvvU+vmnpLZ2paivG-(cd*y3$hCIcsZcYOGh{$&)A6*XX&kXZd3G8m)G$Zz-LV z^GF3VAW^Mdv!)4OM8EgqRiz~*Cji;uzl2uC9^=8I84vNp;ltJ|q-*uQwGp2ma6cY7 z;`%`!9UXO@fr&Ebapfs34OmS9^u6$)bJxrucutf>`dKPKT%%*d3XlFVKunp9 zasduxjrjs>f8V=D|J=XNZp;_Zy^WgQ$9WDjgY=z@stwiEBm9u5*|34&1Na8BMjjgf3+SHcr`5~>oz1Y?SW^=K z^bTyO6>Gar#P_W2gEMwq)ot3; zREHn~U&Dp0l6YT0&k-wLwYjb?5zGK`W6S2v+K>AM(95m2C20L|3m~rN8dprPr@t)5lsk9Hu*W z?pS990s;Ez=+Rj{x7p``4>+c0G5^pYnB1^!TL=(?HLHZ+HicG{~4F1d^5Awl_2!1jICM-!9eoLhbbT^;yHcefyTAaqRcY zmuctDopPT!%k+}x%lZRKnzykr2}}XfG_ne?nRQO~?%hkzo;@RN{P6o`&mMUWBYMTe z6i8ChtjX&gXl`nvrU>jah)2iNM%JdjqoaeaU%yVn!^70x-flljp6Q5tK}5}&X8&&G zX3fpb3E(!rH=zVI_9Gjl45w@{(ITqngWFe7@9{mX;tO25Z_8 zQHEpI+FkTU#4xu>RkN>b3Tnc3UpWzPXWm#o55GKF09j^Mh~)K7{QqbO_~(@CVq! zS<8954|P8mXN2MRs86xZ&Q4EfM@JB94b=(YGuk)s&^jiSF=t3*oNK3`rD{H`yQ?d; ztE=laAUoZx5?RC8*WKOj`%LXEkgDd>&^Q4M^z`%u0rg-It=hLCVsq!Z%^6eB-OvOT zFZ28TN&cRmgU}Elrnk43)!>Z1FCPL2K$7}gwzIc48NX}#!A1BpJP?#v5wkNprhV** z?Cpalt1oH&{r!o3eSKc&ap)iz2BTn_VV`4>9M^b3;(YY}4>#ML6{~(4mH+?%07*qo IM6N<$f(jP3KmY&$ literal 0 HcmV?d00001 diff --git a/assets/javascripts/bundle.d7c377c4.min.js b/assets/javascripts/bundle.d7c377c4.min.js new file mode 100644 index 00000000..6a0bcf88 --- /dev/null +++ b/assets/javascripts/bundle.d7c377c4.min.js @@ -0,0 +1,29 @@ +"use strict";(()=>{var Mi=Object.create;var gr=Object.defineProperty;var Li=Object.getOwnPropertyDescriptor;var _i=Object.getOwnPropertyNames,Ft=Object.getOwnPropertySymbols,Ai=Object.getPrototypeOf,xr=Object.prototype.hasOwnProperty,ro=Object.prototype.propertyIsEnumerable;var to=(e,t,r)=>t in e?gr(e,t,{enumerable:!0,configurable:!0,writable:!0,value:r}):e[t]=r,P=(e,t)=>{for(var r in t||(t={}))xr.call(t,r)&&to(e,r,t[r]);if(Ft)for(var r of Ft(t))ro.call(t,r)&&to(e,r,t[r]);return e};var oo=(e,t)=>{var r={};for(var o in e)xr.call(e,o)&&t.indexOf(o)<0&&(r[o]=e[o]);if(e!=null&&Ft)for(var o of Ft(e))t.indexOf(o)<0&&ro.call(e,o)&&(r[o]=e[o]);return r};var yr=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports);var Ci=(e,t,r,o)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of _i(t))!xr.call(e,n)&&n!==r&&gr(e,n,{get:()=>t[n],enumerable:!(o=Li(t,n))||o.enumerable});return e};var jt=(e,t,r)=>(r=e!=null?Mi(Ai(e)):{},Ci(t||!e||!e.__esModule?gr(r,"default",{value:e,enumerable:!0}):r,e));var no=(e,t,r)=>new Promise((o,n)=>{var i=c=>{try{a(r.next(c))}catch(p){n(p)}},s=c=>{try{a(r.throw(c))}catch(p){n(p)}},a=c=>c.done?o(c.value):Promise.resolve(c.value).then(i,s);a((r=r.apply(e,t)).next())});var ao=yr((Er,io)=>{(function(e,t){typeof Er=="object"&&typeof io!="undefined"?t():typeof define=="function"&&define.amd?define(t):t()})(Er,function(){"use strict";function e(r){var o=!0,n=!1,i=null,s={text:!0,search:!0,url:!0,tel:!0,email:!0,password:!0,number:!0,date:!0,month:!0,week:!0,time:!0,datetime:!0,"datetime-local":!0};function a(C){return!!(C&&C!==document&&C.nodeName!=="HTML"&&C.nodeName!=="BODY"&&"classList"in C&&"contains"in C.classList)}function c(C){var ct=C.type,Ve=C.tagName;return!!(Ve==="INPUT"&&s[ct]&&!C.readOnly||Ve==="TEXTAREA"&&!C.readOnly||C.isContentEditable)}function p(C){C.classList.contains("focus-visible")||(C.classList.add("focus-visible"),C.setAttribute("data-focus-visible-added",""))}function l(C){C.hasAttribute("data-focus-visible-added")&&(C.classList.remove("focus-visible"),C.removeAttribute("data-focus-visible-added"))}function f(C){C.metaKey||C.altKey||C.ctrlKey||(a(r.activeElement)&&p(r.activeElement),o=!0)}function u(C){o=!1}function d(C){a(C.target)&&(o||c(C.target))&&p(C.target)}function y(C){a(C.target)&&(C.target.classList.contains("focus-visible")||C.target.hasAttribute("data-focus-visible-added"))&&(n=!0,window.clearTimeout(i),i=window.setTimeout(function(){n=!1},100),l(C.target))}function b(C){document.visibilityState==="hidden"&&(n&&(o=!0),D())}function D(){document.addEventListener("mousemove",J),document.addEventListener("mousedown",J),document.addEventListener("mouseup",J),document.addEventListener("pointermove",J),document.addEventListener("pointerdown",J),document.addEventListener("pointerup",J),document.addEventListener("touchmove",J),document.addEventListener("touchstart",J),document.addEventListener("touchend",J)}function Q(){document.removeEventListener("mousemove",J),document.removeEventListener("mousedown",J),document.removeEventListener("mouseup",J),document.removeEventListener("pointermove",J),document.removeEventListener("pointerdown",J),document.removeEventListener("pointerup",J),document.removeEventListener("touchmove",J),document.removeEventListener("touchstart",J),document.removeEventListener("touchend",J)}function J(C){C.target.nodeName&&C.target.nodeName.toLowerCase()==="html"||(o=!1,Q())}document.addEventListener("keydown",f,!0),document.addEventListener("mousedown",u,!0),document.addEventListener("pointerdown",u,!0),document.addEventListener("touchstart",u,!0),document.addEventListener("visibilitychange",b,!0),D(),r.addEventListener("focus",d,!0),r.addEventListener("blur",y,!0),r.nodeType===Node.DOCUMENT_FRAGMENT_NODE&&r.host?r.host.setAttribute("data-js-focus-visible",""):r.nodeType===Node.DOCUMENT_NODE&&(document.documentElement.classList.add("js-focus-visible"),document.documentElement.setAttribute("data-js-focus-visible",""))}if(typeof window!="undefined"&&typeof document!="undefined"){window.applyFocusVisiblePolyfill=e;var t;try{t=new CustomEvent("focus-visible-polyfill-ready")}catch(r){t=document.createEvent("CustomEvent"),t.initCustomEvent("focus-visible-polyfill-ready",!1,!1,{})}window.dispatchEvent(t)}typeof document!="undefined"&&e(document)})});var Kr=yr((kt,qr)=>{/*! + * clipboard.js v2.0.11 + * https://clipboardjs.com/ + * + * Licensed MIT © Zeno Rocha + */(function(t,r){typeof kt=="object"&&typeof qr=="object"?qr.exports=r():typeof define=="function"&&define.amd?define([],r):typeof kt=="object"?kt.ClipboardJS=r():t.ClipboardJS=r()})(kt,function(){return function(){var e={686:function(o,n,i){"use strict";i.d(n,{default:function(){return Oi}});var s=i(279),a=i.n(s),c=i(370),p=i.n(c),l=i(817),f=i.n(l);function u(V){try{return document.execCommand(V)}catch(_){return!1}}var d=function(_){var O=f()(_);return u("cut"),O},y=d;function b(V){var _=document.documentElement.getAttribute("dir")==="rtl",O=document.createElement("textarea");O.style.fontSize="12pt",O.style.border="0",O.style.padding="0",O.style.margin="0",O.style.position="absolute",O.style[_?"right":"left"]="-9999px";var $=window.pageYOffset||document.documentElement.scrollTop;return O.style.top="".concat($,"px"),O.setAttribute("readonly",""),O.value=V,O}var D=function(_,O){var $=b(_);O.container.appendChild($);var N=f()($);return u("copy"),$.remove(),N},Q=function(_){var O=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{container:document.body},$="";return typeof _=="string"?$=D(_,O):_ instanceof HTMLInputElement&&!["text","search","url","tel","password"].includes(_==null?void 0:_.type)?$=D(_.value,O):($=f()(_),u("copy")),$},J=Q;function C(V){"@babel/helpers - typeof";return typeof Symbol=="function"&&typeof Symbol.iterator=="symbol"?C=function(O){return typeof O}:C=function(O){return O&&typeof Symbol=="function"&&O.constructor===Symbol&&O!==Symbol.prototype?"symbol":typeof O},C(V)}var ct=function(){var _=arguments.length>0&&arguments[0]!==void 0?arguments[0]:{},O=_.action,$=O===void 0?"copy":O,N=_.container,Y=_.target,ke=_.text;if($!=="copy"&&$!=="cut")throw new Error('Invalid "action" value, use either "copy" or "cut"');if(Y!==void 0)if(Y&&C(Y)==="object"&&Y.nodeType===1){if($==="copy"&&Y.hasAttribute("disabled"))throw new Error('Invalid "target" attribute. Please use "readonly" instead of "disabled" attribute');if($==="cut"&&(Y.hasAttribute("readonly")||Y.hasAttribute("disabled")))throw new Error(`Invalid "target" attribute. You can't cut text from elements with "readonly" or "disabled" attributes`)}else throw new Error('Invalid "target" value, use a valid Element');if(ke)return J(ke,{container:N});if(Y)return $==="cut"?y(Y):J(Y,{container:N})},Ve=ct;function Fe(V){"@babel/helpers - typeof";return typeof Symbol=="function"&&typeof Symbol.iterator=="symbol"?Fe=function(O){return typeof O}:Fe=function(O){return O&&typeof Symbol=="function"&&O.constructor===Symbol&&O!==Symbol.prototype?"symbol":typeof O},Fe(V)}function vi(V,_){if(!(V instanceof _))throw new TypeError("Cannot call a class as a function")}function eo(V,_){for(var O=0;O<_.length;O++){var $=_[O];$.enumerable=$.enumerable||!1,$.configurable=!0,"value"in $&&($.writable=!0),Object.defineProperty(V,$.key,$)}}function gi(V,_,O){return _&&eo(V.prototype,_),O&&eo(V,O),V}function xi(V,_){if(typeof _!="function"&&_!==null)throw new TypeError("Super expression must either be null or a function");V.prototype=Object.create(_&&_.prototype,{constructor:{value:V,writable:!0,configurable:!0}}),_&&br(V,_)}function br(V,_){return br=Object.setPrototypeOf||function($,N){return $.__proto__=N,$},br(V,_)}function yi(V){var _=Ti();return function(){var $=Rt(V),N;if(_){var Y=Rt(this).constructor;N=Reflect.construct($,arguments,Y)}else N=$.apply(this,arguments);return Ei(this,N)}}function Ei(V,_){return _&&(Fe(_)==="object"||typeof _=="function")?_:wi(V)}function wi(V){if(V===void 0)throw new ReferenceError("this hasn't been initialised - super() hasn't been called");return V}function Ti(){if(typeof Reflect=="undefined"||!Reflect.construct||Reflect.construct.sham)return!1;if(typeof Proxy=="function")return!0;try{return Date.prototype.toString.call(Reflect.construct(Date,[],function(){})),!0}catch(V){return!1}}function Rt(V){return Rt=Object.setPrototypeOf?Object.getPrototypeOf:function(O){return O.__proto__||Object.getPrototypeOf(O)},Rt(V)}function vr(V,_){var O="data-clipboard-".concat(V);if(_.hasAttribute(O))return _.getAttribute(O)}var Si=function(V){xi(O,V);var _=yi(O);function O($,N){var Y;return vi(this,O),Y=_.call(this),Y.resolveOptions(N),Y.listenClick($),Y}return gi(O,[{key:"resolveOptions",value:function(){var N=arguments.length>0&&arguments[0]!==void 0?arguments[0]:{};this.action=typeof N.action=="function"?N.action:this.defaultAction,this.target=typeof N.target=="function"?N.target:this.defaultTarget,this.text=typeof N.text=="function"?N.text:this.defaultText,this.container=Fe(N.container)==="object"?N.container:document.body}},{key:"listenClick",value:function(N){var Y=this;this.listener=p()(N,"click",function(ke){return Y.onClick(ke)})}},{key:"onClick",value:function(N){var Y=N.delegateTarget||N.currentTarget,ke=this.action(Y)||"copy",It=Ve({action:ke,container:this.container,target:this.target(Y),text:this.text(Y)});this.emit(It?"success":"error",{action:ke,text:It,trigger:Y,clearSelection:function(){Y&&Y.focus(),window.getSelection().removeAllRanges()}})}},{key:"defaultAction",value:function(N){return vr("action",N)}},{key:"defaultTarget",value:function(N){var Y=vr("target",N);if(Y)return document.querySelector(Y)}},{key:"defaultText",value:function(N){return vr("text",N)}},{key:"destroy",value:function(){this.listener.destroy()}}],[{key:"copy",value:function(N){var Y=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{container:document.body};return J(N,Y)}},{key:"cut",value:function(N){return y(N)}},{key:"isSupported",value:function(){var N=arguments.length>0&&arguments[0]!==void 0?arguments[0]:["copy","cut"],Y=typeof N=="string"?[N]:N,ke=!!document.queryCommandSupported;return Y.forEach(function(It){ke=ke&&!!document.queryCommandSupported(It)}),ke}}]),O}(a()),Oi=Si},828:function(o){var n=9;if(typeof Element!="undefined"&&!Element.prototype.matches){var i=Element.prototype;i.matches=i.matchesSelector||i.mozMatchesSelector||i.msMatchesSelector||i.oMatchesSelector||i.webkitMatchesSelector}function s(a,c){for(;a&&a.nodeType!==n;){if(typeof a.matches=="function"&&a.matches(c))return a;a=a.parentNode}}o.exports=s},438:function(o,n,i){var s=i(828);function a(l,f,u,d,y){var b=p.apply(this,arguments);return l.addEventListener(u,b,y),{destroy:function(){l.removeEventListener(u,b,y)}}}function c(l,f,u,d,y){return typeof l.addEventListener=="function"?a.apply(null,arguments):typeof u=="function"?a.bind(null,document).apply(null,arguments):(typeof l=="string"&&(l=document.querySelectorAll(l)),Array.prototype.map.call(l,function(b){return a(b,f,u,d,y)}))}function p(l,f,u,d){return function(y){y.delegateTarget=s(y.target,f),y.delegateTarget&&d.call(l,y)}}o.exports=c},879:function(o,n){n.node=function(i){return i!==void 0&&i instanceof HTMLElement&&i.nodeType===1},n.nodeList=function(i){var s=Object.prototype.toString.call(i);return i!==void 0&&(s==="[object NodeList]"||s==="[object HTMLCollection]")&&"length"in i&&(i.length===0||n.node(i[0]))},n.string=function(i){return typeof i=="string"||i instanceof String},n.fn=function(i){var s=Object.prototype.toString.call(i);return s==="[object Function]"}},370:function(o,n,i){var s=i(879),a=i(438);function c(u,d,y){if(!u&&!d&&!y)throw new Error("Missing required arguments");if(!s.string(d))throw new TypeError("Second argument must be a String");if(!s.fn(y))throw new TypeError("Third argument must be a Function");if(s.node(u))return p(u,d,y);if(s.nodeList(u))return l(u,d,y);if(s.string(u))return f(u,d,y);throw new TypeError("First argument must be a String, HTMLElement, HTMLCollection, or NodeList")}function p(u,d,y){return u.addEventListener(d,y),{destroy:function(){u.removeEventListener(d,y)}}}function l(u,d,y){return Array.prototype.forEach.call(u,function(b){b.addEventListener(d,y)}),{destroy:function(){Array.prototype.forEach.call(u,function(b){b.removeEventListener(d,y)})}}}function f(u,d,y){return a(document.body,u,d,y)}o.exports=c},817:function(o){function n(i){var s;if(i.nodeName==="SELECT")i.focus(),s=i.value;else if(i.nodeName==="INPUT"||i.nodeName==="TEXTAREA"){var a=i.hasAttribute("readonly");a||i.setAttribute("readonly",""),i.select(),i.setSelectionRange(0,i.value.length),a||i.removeAttribute("readonly"),s=i.value}else{i.hasAttribute("contenteditable")&&i.focus();var c=window.getSelection(),p=document.createRange();p.selectNodeContents(i),c.removeAllRanges(),c.addRange(p),s=c.toString()}return s}o.exports=n},279:function(o){function n(){}n.prototype={on:function(i,s,a){var c=this.e||(this.e={});return(c[i]||(c[i]=[])).push({fn:s,ctx:a}),this},once:function(i,s,a){var c=this;function p(){c.off(i,p),s.apply(a,arguments)}return p._=s,this.on(i,p,a)},emit:function(i){var s=[].slice.call(arguments,1),a=((this.e||(this.e={}))[i]||[]).slice(),c=0,p=a.length;for(c;c{"use strict";/*! + * escape-html + * Copyright(c) 2012-2013 TJ Holowaychuk + * Copyright(c) 2015 Andreas Lubbe + * Copyright(c) 2015 Tiancheng "Timothy" Gu + * MIT Licensed + */var Wa=/["'&<>]/;Vn.exports=Ua;function Ua(e){var t=""+e,r=Wa.exec(t);if(!r)return t;var o,n="",i=0,s=0;for(i=r.index;i0&&i[i.length-1])&&(p[0]===6||p[0]===2)){r=0;continue}if(p[0]===3&&(!i||p[1]>i[0]&&p[1]=e.length&&(e=void 0),{value:e&&e[o++],done:!e}}};throw new TypeError(t?"Object is not iterable.":"Symbol.iterator is not defined.")}function z(e,t){var r=typeof Symbol=="function"&&e[Symbol.iterator];if(!r)return e;var o=r.call(e),n,i=[],s;try{for(;(t===void 0||t-- >0)&&!(n=o.next()).done;)i.push(n.value)}catch(a){s={error:a}}finally{try{n&&!n.done&&(r=o.return)&&r.call(o)}finally{if(s)throw s.error}}return i}function K(e,t,r){if(r||arguments.length===2)for(var o=0,n=t.length,i;o1||a(u,d)})})}function a(u,d){try{c(o[u](d))}catch(y){f(i[0][3],y)}}function c(u){u.value instanceof ot?Promise.resolve(u.value.v).then(p,l):f(i[0][2],u)}function p(u){a("next",u)}function l(u){a("throw",u)}function f(u,d){u(d),i.shift(),i.length&&a(i[0][0],i[0][1])}}function po(e){if(!Symbol.asyncIterator)throw new TypeError("Symbol.asyncIterator is not defined.");var t=e[Symbol.asyncIterator],r;return t?t.call(e):(e=typeof be=="function"?be(e):e[Symbol.iterator](),r={},o("next"),o("throw"),o("return"),r[Symbol.asyncIterator]=function(){return this},r);function o(i){r[i]=e[i]&&function(s){return new Promise(function(a,c){s=e[i](s),n(a,c,s.done,s.value)})}}function n(i,s,a,c){Promise.resolve(c).then(function(p){i({value:p,done:a})},s)}}function k(e){return typeof e=="function"}function pt(e){var t=function(o){Error.call(o),o.stack=new Error().stack},r=e(t);return r.prototype=Object.create(Error.prototype),r.prototype.constructor=r,r}var Ut=pt(function(e){return function(r){e(this),this.message=r?r.length+` errors occurred during unsubscription: +`+r.map(function(o,n){return n+1+") "+o.toString()}).join(` + `):"",this.name="UnsubscriptionError",this.errors=r}});function ze(e,t){if(e){var r=e.indexOf(t);0<=r&&e.splice(r,1)}}var je=function(){function e(t){this.initialTeardown=t,this.closed=!1,this._parentage=null,this._finalizers=null}return e.prototype.unsubscribe=function(){var t,r,o,n,i;if(!this.closed){this.closed=!0;var s=this._parentage;if(s)if(this._parentage=null,Array.isArray(s))try{for(var a=be(s),c=a.next();!c.done;c=a.next()){var p=c.value;p.remove(this)}}catch(b){t={error:b}}finally{try{c&&!c.done&&(r=a.return)&&r.call(a)}finally{if(t)throw t.error}}else s.remove(this);var l=this.initialTeardown;if(k(l))try{l()}catch(b){i=b instanceof Ut?b.errors:[b]}var f=this._finalizers;if(f){this._finalizers=null;try{for(var u=be(f),d=u.next();!d.done;d=u.next()){var y=d.value;try{lo(y)}catch(b){i=i!=null?i:[],b instanceof Ut?i=K(K([],z(i)),z(b.errors)):i.push(b)}}}catch(b){o={error:b}}finally{try{d&&!d.done&&(n=u.return)&&n.call(u)}finally{if(o)throw o.error}}}if(i)throw new Ut(i)}},e.prototype.add=function(t){var r;if(t&&t!==this)if(this.closed)lo(t);else{if(t instanceof e){if(t.closed||t._hasParent(this))return;t._addParent(this)}(this._finalizers=(r=this._finalizers)!==null&&r!==void 0?r:[]).push(t)}},e.prototype._hasParent=function(t){var r=this._parentage;return r===t||Array.isArray(r)&&r.includes(t)},e.prototype._addParent=function(t){var r=this._parentage;this._parentage=Array.isArray(r)?(r.push(t),r):r?[r,t]:t},e.prototype._removeParent=function(t){var r=this._parentage;r===t?this._parentage=null:Array.isArray(r)&&ze(r,t)},e.prototype.remove=function(t){var r=this._finalizers;r&&ze(r,t),t instanceof e&&t._removeParent(this)},e.EMPTY=function(){var t=new e;return t.closed=!0,t}(),e}();var Tr=je.EMPTY;function Nt(e){return e instanceof je||e&&"closed"in e&&k(e.remove)&&k(e.add)&&k(e.unsubscribe)}function lo(e){k(e)?e():e.unsubscribe()}var He={onUnhandledError:null,onStoppedNotification:null,Promise:void 0,useDeprecatedSynchronousErrorHandling:!1,useDeprecatedNextContext:!1};var lt={setTimeout:function(e,t){for(var r=[],o=2;o0},enumerable:!1,configurable:!0}),t.prototype._trySubscribe=function(r){return this._throwIfClosed(),e.prototype._trySubscribe.call(this,r)},t.prototype._subscribe=function(r){return this._throwIfClosed(),this._checkFinalizedStatuses(r),this._innerSubscribe(r)},t.prototype._innerSubscribe=function(r){var o=this,n=this,i=n.hasError,s=n.isStopped,a=n.observers;return i||s?Tr:(this.currentObservers=null,a.push(r),new je(function(){o.currentObservers=null,ze(a,r)}))},t.prototype._checkFinalizedStatuses=function(r){var o=this,n=o.hasError,i=o.thrownError,s=o.isStopped;n?r.error(i):s&&r.complete()},t.prototype.asObservable=function(){var r=new I;return r.source=this,r},t.create=function(r,o){return new xo(r,o)},t}(I);var xo=function(e){se(t,e);function t(r,o){var n=e.call(this)||this;return n.destination=r,n.source=o,n}return t.prototype.next=function(r){var o,n;(n=(o=this.destination)===null||o===void 0?void 0:o.next)===null||n===void 0||n.call(o,r)},t.prototype.error=function(r){var o,n;(n=(o=this.destination)===null||o===void 0?void 0:o.error)===null||n===void 0||n.call(o,r)},t.prototype.complete=function(){var r,o;(o=(r=this.destination)===null||r===void 0?void 0:r.complete)===null||o===void 0||o.call(r)},t.prototype._subscribe=function(r){var o,n;return(n=(o=this.source)===null||o===void 0?void 0:o.subscribe(r))!==null&&n!==void 0?n:Tr},t}(x);var St={now:function(){return(St.delegate||Date).now()},delegate:void 0};var Ot=function(e){se(t,e);function t(r,o,n){r===void 0&&(r=1/0),o===void 0&&(o=1/0),n===void 0&&(n=St);var i=e.call(this)||this;return i._bufferSize=r,i._windowTime=o,i._timestampProvider=n,i._buffer=[],i._infiniteTimeWindow=!0,i._infiniteTimeWindow=o===1/0,i._bufferSize=Math.max(1,r),i._windowTime=Math.max(1,o),i}return t.prototype.next=function(r){var o=this,n=o.isStopped,i=o._buffer,s=o._infiniteTimeWindow,a=o._timestampProvider,c=o._windowTime;n||(i.push(r),!s&&i.push(a.now()+c)),this._trimBuffer(),e.prototype.next.call(this,r)},t.prototype._subscribe=function(r){this._throwIfClosed(),this._trimBuffer();for(var o=this._innerSubscribe(r),n=this,i=n._infiniteTimeWindow,s=n._buffer,a=s.slice(),c=0;c0?e.prototype.requestAsyncId.call(this,r,o,n):(r.actions.push(this),r._scheduled||(r._scheduled=ut.requestAnimationFrame(function(){return r.flush(void 0)})))},t.prototype.recycleAsyncId=function(r,o,n){var i;if(n===void 0&&(n=0),n!=null?n>0:this.delay>0)return e.prototype.recycleAsyncId.call(this,r,o,n);var s=r.actions;o!=null&&((i=s[s.length-1])===null||i===void 0?void 0:i.id)!==o&&(ut.cancelAnimationFrame(o),r._scheduled=void 0)},t}(zt);var wo=function(e){se(t,e);function t(){return e!==null&&e.apply(this,arguments)||this}return t.prototype.flush=function(r){this._active=!0;var o=this._scheduled;this._scheduled=void 0;var n=this.actions,i;r=r||n.shift();do if(i=r.execute(r.state,r.delay))break;while((r=n[0])&&r.id===o&&n.shift());if(this._active=!1,i){for(;(r=n[0])&&r.id===o&&n.shift();)r.unsubscribe();throw i}},t}(qt);var ge=new wo(Eo);var M=new I(function(e){return e.complete()});function Kt(e){return e&&k(e.schedule)}function Cr(e){return e[e.length-1]}function Ge(e){return k(Cr(e))?e.pop():void 0}function Ae(e){return Kt(Cr(e))?e.pop():void 0}function Qt(e,t){return typeof Cr(e)=="number"?e.pop():t}var dt=function(e){return e&&typeof e.length=="number"&&typeof e!="function"};function Yt(e){return k(e==null?void 0:e.then)}function Bt(e){return k(e[ft])}function Gt(e){return Symbol.asyncIterator&&k(e==null?void 0:e[Symbol.asyncIterator])}function Jt(e){return new TypeError("You provided "+(e!==null&&typeof e=="object"?"an invalid object":"'"+e+"'")+" where a stream was expected. You can provide an Observable, Promise, ReadableStream, Array, AsyncIterable, or Iterable.")}function Wi(){return typeof Symbol!="function"||!Symbol.iterator?"@@iterator":Symbol.iterator}var Xt=Wi();function Zt(e){return k(e==null?void 0:e[Xt])}function er(e){return co(this,arguments,function(){var r,o,n,i;return Wt(this,function(s){switch(s.label){case 0:r=e.getReader(),s.label=1;case 1:s.trys.push([1,,9,10]),s.label=2;case 2:return[4,ot(r.read())];case 3:return o=s.sent(),n=o.value,i=o.done,i?[4,ot(void 0)]:[3,5];case 4:return[2,s.sent()];case 5:return[4,ot(n)];case 6:return[4,s.sent()];case 7:return s.sent(),[3,2];case 8:return[3,10];case 9:return r.releaseLock(),[7];case 10:return[2]}})})}function tr(e){return k(e==null?void 0:e.getReader)}function F(e){if(e instanceof I)return e;if(e!=null){if(Bt(e))return Ui(e);if(dt(e))return Ni(e);if(Yt(e))return Di(e);if(Gt(e))return To(e);if(Zt(e))return Vi(e);if(tr(e))return zi(e)}throw Jt(e)}function Ui(e){return new I(function(t){var r=e[ft]();if(k(r.subscribe))return r.subscribe(t);throw new TypeError("Provided object does not correctly implement Symbol.observable")})}function Ni(e){return new I(function(t){for(var r=0;r=2;return function(o){return o.pipe(e?v(function(n,i){return e(n,i,o)}):pe,ue(1),r?$e(t):Uo(function(){return new or}))}}function Rr(e){return e<=0?function(){return M}:g(function(t,r){var o=[];t.subscribe(E(r,function(n){o.push(n),e=2,!0))}function de(e){e===void 0&&(e={});var t=e.connector,r=t===void 0?function(){return new x}:t,o=e.resetOnError,n=o===void 0?!0:o,i=e.resetOnComplete,s=i===void 0?!0:i,a=e.resetOnRefCountZero,c=a===void 0?!0:a;return function(p){var l,f,u,d=0,y=!1,b=!1,D=function(){f==null||f.unsubscribe(),f=void 0},Q=function(){D(),l=u=void 0,y=b=!1},J=function(){var C=l;Q(),C==null||C.unsubscribe()};return g(function(C,ct){d++,!b&&!y&&D();var Ve=u=u!=null?u:r();ct.add(function(){d--,d===0&&!b&&!y&&(f=jr(J,c))}),Ve.subscribe(ct),!l&&d>0&&(l=new it({next:function(Fe){return Ve.next(Fe)},error:function(Fe){b=!0,D(),f=jr(Q,n,Fe),Ve.error(Fe)},complete:function(){y=!0,D(),f=jr(Q,s),Ve.complete()}}),F(C).subscribe(l))})(p)}}function jr(e,t){for(var r=[],o=2;oe.next(document)),e}function W(e,t=document){return Array.from(t.querySelectorAll(e))}function U(e,t=document){let r=ce(e,t);if(typeof r=="undefined")throw new ReferenceError(`Missing element: expected "${e}" to be present`);return r}function ce(e,t=document){return t.querySelector(e)||void 0}function Ie(){return document.activeElement instanceof HTMLElement&&document.activeElement||void 0}var ca=L(h(document.body,"focusin"),h(document.body,"focusout")).pipe(ye(1),q(void 0),m(()=>Ie()||document.body),Z(1));function vt(e){return ca.pipe(m(t=>e.contains(t)),X())}function qo(e,t){return L(h(e,"mouseenter").pipe(m(()=>!0)),h(e,"mouseleave").pipe(m(()=>!1))).pipe(t?ye(t):pe,q(!1))}function Ue(e){return{x:e.offsetLeft,y:e.offsetTop}}function Ko(e){return L(h(window,"load"),h(window,"resize")).pipe(Le(0,ge),m(()=>Ue(e)),q(Ue(e)))}function ir(e){return{x:e.scrollLeft,y:e.scrollTop}}function et(e){return L(h(e,"scroll"),h(window,"resize")).pipe(Le(0,ge),m(()=>ir(e)),q(ir(e)))}function Qo(e,t){if(typeof t=="string"||typeof t=="number")e.innerHTML+=t.toString();else if(t instanceof Node)e.appendChild(t);else if(Array.isArray(t))for(let r of t)Qo(e,r)}function S(e,t,...r){let o=document.createElement(e);if(t)for(let n of Object.keys(t))typeof t[n]!="undefined"&&(typeof t[n]!="boolean"?o.setAttribute(n,t[n]):o.setAttribute(n,""));for(let n of r)Qo(o,n);return o}function ar(e){if(e>999){let t=+((e-950)%1e3>99);return`${((e+1e-6)/1e3).toFixed(t)}k`}else return e.toString()}function gt(e){let t=S("script",{src:e});return H(()=>(document.head.appendChild(t),L(h(t,"load"),h(t,"error").pipe(w(()=>kr(()=>new ReferenceError(`Invalid script: ${e}`))))).pipe(m(()=>{}),A(()=>document.head.removeChild(t)),ue(1))))}var Yo=new x,pa=H(()=>typeof ResizeObserver=="undefined"?gt("https://unpkg.com/resize-observer-polyfill"):R(void 0)).pipe(m(()=>new ResizeObserver(e=>{for(let t of e)Yo.next(t)})),w(e=>L(Ke,R(e)).pipe(A(()=>e.disconnect()))),Z(1));function le(e){return{width:e.offsetWidth,height:e.offsetHeight}}function Se(e){return pa.pipe(T(t=>t.observe(e)),w(t=>Yo.pipe(v(({target:r})=>r===e),A(()=>t.unobserve(e)),m(()=>le(e)))),q(le(e)))}function xt(e){return{width:e.scrollWidth,height:e.scrollHeight}}function sr(e){let t=e.parentElement;for(;t&&(e.scrollWidth<=t.scrollWidth&&e.scrollHeight<=t.scrollHeight);)t=(e=t).parentElement;return t?e:void 0}var Bo=new x,la=H(()=>R(new IntersectionObserver(e=>{for(let t of e)Bo.next(t)},{threshold:0}))).pipe(w(e=>L(Ke,R(e)).pipe(A(()=>e.disconnect()))),Z(1));function yt(e){return la.pipe(T(t=>t.observe(e)),w(t=>Bo.pipe(v(({target:r})=>r===e),A(()=>t.unobserve(e)),m(({isIntersecting:r})=>r))))}function Go(e,t=16){return et(e).pipe(m(({y:r})=>{let o=le(e),n=xt(e);return r>=n.height-o.height-t}),X())}var cr={drawer:U("[data-md-toggle=drawer]"),search:U("[data-md-toggle=search]")};function Jo(e){return cr[e].checked}function Ye(e,t){cr[e].checked!==t&&cr[e].click()}function Ne(e){let t=cr[e];return h(t,"change").pipe(m(()=>t.checked),q(t.checked))}function ma(e,t){switch(e.constructor){case HTMLInputElement:return e.type==="radio"?/^Arrow/.test(t):!0;case HTMLSelectElement:case HTMLTextAreaElement:return!0;default:return e.isContentEditable}}function fa(){return L(h(window,"compositionstart").pipe(m(()=>!0)),h(window,"compositionend").pipe(m(()=>!1))).pipe(q(!1))}function Xo(){let e=h(window,"keydown").pipe(v(t=>!(t.metaKey||t.ctrlKey)),m(t=>({mode:Jo("search")?"search":"global",type:t.key,claim(){t.preventDefault(),t.stopPropagation()}})),v(({mode:t,type:r})=>{if(t==="global"){let o=Ie();if(typeof o!="undefined")return!ma(o,r)}return!0}),de());return fa().pipe(w(t=>t?M:e))}function me(){return new URL(location.href)}function st(e,t=!1){if(G("navigation.instant")&&!t){let r=S("a",{href:e.href});document.body.appendChild(r),r.click(),r.remove()}else location.href=e.href}function Zo(){return new x}function en(){return location.hash.slice(1)}function pr(e){let t=S("a",{href:e});t.addEventListener("click",r=>r.stopPropagation()),t.click()}function ua(e){return L(h(window,"hashchange"),e).pipe(m(en),q(en()),v(t=>t.length>0),Z(1))}function tn(e){return ua(e).pipe(m(t=>ce(`[id="${t}"]`)),v(t=>typeof t!="undefined"))}function At(e){let t=matchMedia(e);return nr(r=>t.addListener(()=>r(t.matches))).pipe(q(t.matches))}function rn(){let e=matchMedia("print");return L(h(window,"beforeprint").pipe(m(()=>!0)),h(window,"afterprint").pipe(m(()=>!1))).pipe(q(e.matches))}function Dr(e,t){return e.pipe(w(r=>r?t():M))}function lr(e,t){return new I(r=>{let o=new XMLHttpRequest;o.open("GET",`${e}`),o.responseType="blob",o.addEventListener("load",()=>{o.status>=200&&o.status<300?(r.next(o.response),r.complete()):r.error(new Error(o.statusText))}),o.addEventListener("error",()=>{r.error(new Error("Network Error"))}),o.addEventListener("abort",()=>{r.error(new Error("Request aborted"))}),typeof(t==null?void 0:t.progress$)!="undefined"&&(o.addEventListener("progress",n=>{if(n.lengthComputable)t.progress$.next(n.loaded/n.total*100);else{let i=Number(o.getResponseHeader("Content-Length"))||0;t.progress$.next(n.loaded/i*100)}}),t.progress$.next(5)),o.send()})}function De(e,t){return lr(e,t).pipe(w(r=>r.text()),m(r=>JSON.parse(r)),Z(1))}function on(e,t){let r=new DOMParser;return lr(e,t).pipe(w(o=>o.text()),m(o=>r.parseFromString(o,"text/xml")),Z(1))}function nn(){return{x:Math.max(0,scrollX),y:Math.max(0,scrollY)}}function an(){return L(h(window,"scroll",{passive:!0}),h(window,"resize",{passive:!0})).pipe(m(nn),q(nn()))}function sn(){return{width:innerWidth,height:innerHeight}}function cn(){return h(window,"resize",{passive:!0}).pipe(m(sn),q(sn()))}function pn(){return B([an(),cn()]).pipe(m(([e,t])=>({offset:e,size:t})),Z(1))}function mr(e,{viewport$:t,header$:r}){let o=t.pipe(te("size")),n=B([o,r]).pipe(m(()=>Ue(e)));return B([r,t,n]).pipe(m(([{height:i},{offset:s,size:a},{x:c,y:p}])=>({offset:{x:s.x-c,y:s.y-p+i},size:a})))}function da(e){return h(e,"message",t=>t.data)}function ha(e){let t=new x;return t.subscribe(r=>e.postMessage(r)),t}function ln(e,t=new Worker(e)){let r=da(t),o=ha(t),n=new x;n.subscribe(o);let i=o.pipe(ee(),oe(!0));return n.pipe(ee(),Re(r.pipe(j(i))),de())}var ba=U("#__config"),Et=JSON.parse(ba.textContent);Et.base=`${new URL(Et.base,me())}`;function he(){return Et}function G(e){return Et.features.includes(e)}function we(e,t){return typeof t!="undefined"?Et.translations[e].replace("#",t.toString()):Et.translations[e]}function Oe(e,t=document){return U(`[data-md-component=${e}]`,t)}function ne(e,t=document){return W(`[data-md-component=${e}]`,t)}function va(e){let t=U(".md-typeset > :first-child",e);return h(t,"click",{once:!0}).pipe(m(()=>U(".md-typeset",e)),m(r=>({hash:__md_hash(r.innerHTML)})))}function mn(e){if(!G("announce.dismiss")||!e.childElementCount)return M;if(!e.hidden){let t=U(".md-typeset",e);__md_hash(t.innerHTML)===__md_get("__announce")&&(e.hidden=!0)}return H(()=>{let t=new x;return t.subscribe(({hash:r})=>{e.hidden=!0,__md_set("__announce",r)}),va(e).pipe(T(r=>t.next(r)),A(()=>t.complete()),m(r=>P({ref:e},r)))})}function ga(e,{target$:t}){return t.pipe(m(r=>({hidden:r!==e})))}function fn(e,t){let r=new x;return r.subscribe(({hidden:o})=>{e.hidden=o}),ga(e,t).pipe(T(o=>r.next(o)),A(()=>r.complete()),m(o=>P({ref:e},o)))}function Ct(e,t){return t==="inline"?S("div",{class:"md-tooltip md-tooltip--inline",id:e,role:"tooltip"},S("div",{class:"md-tooltip__inner md-typeset"})):S("div",{class:"md-tooltip",id:e,role:"tooltip"},S("div",{class:"md-tooltip__inner md-typeset"}))}function un(e,t){if(t=t?`${t}_annotation_${e}`:void 0,t){let r=t?`#${t}`:void 0;return S("aside",{class:"md-annotation",tabIndex:0},Ct(t),S("a",{href:r,class:"md-annotation__index",tabIndex:-1},S("span",{"data-md-annotation-id":e})))}else return S("aside",{class:"md-annotation",tabIndex:0},Ct(t),S("span",{class:"md-annotation__index",tabIndex:-1},S("span",{"data-md-annotation-id":e})))}function dn(e){return S("button",{class:"md-clipboard md-icon",title:we("clipboard.copy"),"data-clipboard-target":`#${e} > code`})}function Vr(e,t){let r=t&2,o=t&1,n=Object.keys(e.terms).filter(c=>!e.terms[c]).reduce((c,p)=>[...c,S("del",null,p)," "],[]).slice(0,-1),i=he(),s=new URL(e.location,i.base);G("search.highlight")&&s.searchParams.set("h",Object.entries(e.terms).filter(([,c])=>c).reduce((c,[p])=>`${c} ${p}`.trim(),""));let{tags:a}=he();return S("a",{href:`${s}`,class:"md-search-result__link",tabIndex:-1},S("article",{class:"md-search-result__article md-typeset","data-md-score":e.score.toFixed(2)},r>0&&S("div",{class:"md-search-result__icon md-icon"}),r>0&&S("h1",null,e.title),r<=0&&S("h2",null,e.title),o>0&&e.text.length>0&&e.text,e.tags&&e.tags.map(c=>{let p=a?c in a?`md-tag-icon md-tag--${a[c]}`:"md-tag-icon":"";return S("span",{class:`md-tag ${p}`},c)}),o>0&&n.length>0&&S("p",{class:"md-search-result__terms"},we("search.result.term.missing"),": ",...n)))}function hn(e){let t=e[0].score,r=[...e],o=he(),n=r.findIndex(l=>!`${new URL(l.location,o.base)}`.includes("#")),[i]=r.splice(n,1),s=r.findIndex(l=>l.scoreVr(l,1)),...c.length?[S("details",{class:"md-search-result__more"},S("summary",{tabIndex:-1},S("div",null,c.length>0&&c.length===1?we("search.result.more.one"):we("search.result.more.other",c.length))),...c.map(l=>Vr(l,1)))]:[]];return S("li",{class:"md-search-result__item"},p)}function bn(e){return S("ul",{class:"md-source__facts"},Object.entries(e).map(([t,r])=>S("li",{class:`md-source__fact md-source__fact--${t}`},typeof r=="number"?ar(r):r)))}function zr(e){let t=`tabbed-control tabbed-control--${e}`;return S("div",{class:t,hidden:!0},S("button",{class:"tabbed-button",tabIndex:-1,"aria-hidden":"true"}))}function vn(e){return S("div",{class:"md-typeset__scrollwrap"},S("div",{class:"md-typeset__table"},e))}function xa(e){let t=he(),r=new URL(`../${e.version}/`,t.base);return S("li",{class:"md-version__item"},S("a",{href:`${r}`,class:"md-version__link"},e.title))}function gn(e,t){return S("div",{class:"md-version"},S("button",{class:"md-version__current","aria-label":we("select.version")},t.title),S("ul",{class:"md-version__list"},e.map(xa)))}var ya=0;function Ea(e,t){document.body.append(e);let{width:r}=le(e);e.style.setProperty("--md-tooltip-width",`${r}px`),e.remove();let o=sr(t),n=typeof o!="undefined"?et(o):R({x:0,y:0}),i=L(vt(t),qo(t)).pipe(X());return B([i,n]).pipe(m(([s,a])=>{let{x:c,y:p}=Ue(t),l=le(t),f=t.closest("table");return f&&t.parentElement&&(c+=f.offsetLeft+t.parentElement.offsetLeft,p+=f.offsetTop+t.parentElement.offsetTop),{active:s,offset:{x:c-a.x+l.width/2-r/2,y:p-a.y+l.height+8}}}))}function Be(e){let t=e.title;if(!t.length)return M;let r=`__tooltip_${ya++}`,o=Ct(r,"inline"),n=U(".md-typeset",o);return n.innerHTML=t,H(()=>{let i=new x;return i.subscribe({next({offset:s}){o.style.setProperty("--md-tooltip-x",`${s.x}px`),o.style.setProperty("--md-tooltip-y",`${s.y}px`)},complete(){o.style.removeProperty("--md-tooltip-x"),o.style.removeProperty("--md-tooltip-y")}}),L(i.pipe(v(({active:s})=>s)),i.pipe(ye(250),v(({active:s})=>!s))).subscribe({next({active:s}){s?(e.insertAdjacentElement("afterend",o),e.setAttribute("aria-describedby",r),e.removeAttribute("title")):(o.remove(),e.removeAttribute("aria-describedby"),e.setAttribute("title",t))},complete(){o.remove(),e.removeAttribute("aria-describedby"),e.setAttribute("title",t)}}),i.pipe(Le(16,ge)).subscribe(({active:s})=>{o.classList.toggle("md-tooltip--active",s)}),i.pipe(_t(125,ge),v(()=>!!e.offsetParent),m(()=>e.offsetParent.getBoundingClientRect()),m(({x:s})=>s)).subscribe({next(s){s?o.style.setProperty("--md-tooltip-0",`${-s}px`):o.style.removeProperty("--md-tooltip-0")},complete(){o.style.removeProperty("--md-tooltip-0")}}),Ea(o,e).pipe(T(s=>i.next(s)),A(()=>i.complete()),m(s=>P({ref:e},s)))}).pipe(qe(ie))}function wa(e,t){let r=H(()=>B([Ko(e),et(t)])).pipe(m(([{x:o,y:n},i])=>{let{width:s,height:a}=le(e);return{x:o-i.x+s/2,y:n-i.y+a/2}}));return vt(e).pipe(w(o=>r.pipe(m(n=>({active:o,offset:n})),ue(+!o||1/0))))}function xn(e,t,{target$:r}){let[o,n]=Array.from(e.children);return H(()=>{let i=new x,s=i.pipe(ee(),oe(!0));return i.subscribe({next({offset:a}){e.style.setProperty("--md-tooltip-x",`${a.x}px`),e.style.setProperty("--md-tooltip-y",`${a.y}px`)},complete(){e.style.removeProperty("--md-tooltip-x"),e.style.removeProperty("--md-tooltip-y")}}),yt(e).pipe(j(s)).subscribe(a=>{e.toggleAttribute("data-md-visible",a)}),L(i.pipe(v(({active:a})=>a)),i.pipe(ye(250),v(({active:a})=>!a))).subscribe({next({active:a}){a?e.prepend(o):o.remove()},complete(){e.prepend(o)}}),i.pipe(Le(16,ge)).subscribe(({active:a})=>{o.classList.toggle("md-tooltip--active",a)}),i.pipe(_t(125,ge),v(()=>!!e.offsetParent),m(()=>e.offsetParent.getBoundingClientRect()),m(({x:a})=>a)).subscribe({next(a){a?e.style.setProperty("--md-tooltip-0",`${-a}px`):e.style.removeProperty("--md-tooltip-0")},complete(){e.style.removeProperty("--md-tooltip-0")}}),h(n,"click").pipe(j(s),v(a=>!(a.metaKey||a.ctrlKey))).subscribe(a=>{a.stopPropagation(),a.preventDefault()}),h(n,"mousedown").pipe(j(s),ae(i)).subscribe(([a,{active:c}])=>{var p;if(a.button!==0||a.metaKey||a.ctrlKey)a.preventDefault();else if(c){a.preventDefault();let l=e.parentElement.closest(".md-annotation");l instanceof HTMLElement?l.focus():(p=Ie())==null||p.blur()}}),r.pipe(j(s),v(a=>a===o),Qe(125)).subscribe(()=>e.focus()),wa(e,t).pipe(T(a=>i.next(a)),A(()=>i.complete()),m(a=>P({ref:e},a)))})}function Ta(e){return e.tagName==="CODE"?W(".c, .c1, .cm",e):[e]}function Sa(e){let t=[];for(let r of Ta(e)){let o=[],n=document.createNodeIterator(r,NodeFilter.SHOW_TEXT);for(let i=n.nextNode();i;i=n.nextNode())o.push(i);for(let i of o){let s;for(;s=/(\(\d+\))(!)?/.exec(i.textContent);){let[,a,c]=s;if(typeof c=="undefined"){let p=i.splitText(s.index);i=p.splitText(a.length),t.push(p)}else{i.textContent=a,t.push(i);break}}}}return t}function yn(e,t){t.append(...Array.from(e.childNodes))}function fr(e,t,{target$:r,print$:o}){let n=t.closest("[id]"),i=n==null?void 0:n.id,s=new Map;for(let a of Sa(t)){let[,c]=a.textContent.match(/\((\d+)\)/);ce(`:scope > li:nth-child(${c})`,e)&&(s.set(c,un(c,i)),a.replaceWith(s.get(c)))}return s.size===0?M:H(()=>{let a=new x,c=a.pipe(ee(),oe(!0)),p=[];for(let[l,f]of s)p.push([U(".md-typeset",f),U(`:scope > li:nth-child(${l})`,e)]);return o.pipe(j(c)).subscribe(l=>{e.hidden=!l,e.classList.toggle("md-annotation-list",l);for(let[f,u]of p)l?yn(f,u):yn(u,f)}),L(...[...s].map(([,l])=>xn(l,t,{target$:r}))).pipe(A(()=>a.complete()),de())})}function En(e){if(e.nextElementSibling){let t=e.nextElementSibling;if(t.tagName==="OL")return t;if(t.tagName==="P"&&!t.children.length)return En(t)}}function wn(e,t){return H(()=>{let r=En(e);return typeof r!="undefined"?fr(r,e,t):M})}var Tn=jt(Kr());var Oa=0;function Sn(e){if(e.nextElementSibling){let t=e.nextElementSibling;if(t.tagName==="OL")return t;if(t.tagName==="P"&&!t.children.length)return Sn(t)}}function Ma(e){return Se(e).pipe(m(({width:t})=>({scrollable:xt(e).width>t})),te("scrollable"))}function On(e,t){let{matches:r}=matchMedia("(hover)"),o=H(()=>{let n=new x,i=n.pipe(Rr(1));n.subscribe(({scrollable:c})=>{c&&r?e.setAttribute("tabindex","0"):e.removeAttribute("tabindex")});let s=[];if(Tn.default.isSupported()&&(e.closest(".copy")||G("content.code.copy")&&!e.closest(".no-copy"))){let c=e.closest("pre");c.id=`__code_${Oa++}`;let p=dn(c.id);c.insertBefore(p,e),G("content.tooltips")&&s.push(Be(p))}let a=e.closest(".highlight");if(a instanceof HTMLElement){let c=Sn(a);if(typeof c!="undefined"&&(a.classList.contains("annotate")||G("content.code.annotate"))){let p=fr(c,e,t);s.push(Se(a).pipe(j(i),m(({width:l,height:f})=>l&&f),X(),w(l=>l?p:M)))}}return Ma(e).pipe(T(c=>n.next(c)),A(()=>n.complete()),m(c=>P({ref:e},c)),Re(...s))});return G("content.lazy")?yt(e).pipe(v(n=>n),ue(1),w(()=>o)):o}function La(e,{target$:t,print$:r}){let o=!0;return L(t.pipe(m(n=>n.closest("details:not([open])")),v(n=>e===n),m(()=>({action:"open",reveal:!0}))),r.pipe(v(n=>n||!o),T(()=>o=e.open),m(n=>({action:n?"open":"close"}))))}function Mn(e,t){return H(()=>{let r=new x;return r.subscribe(({action:o,reveal:n})=>{e.toggleAttribute("open",o==="open"),n&&e.scrollIntoView()}),La(e,t).pipe(T(o=>r.next(o)),A(()=>r.complete()),m(o=>P({ref:e},o)))})}var Ln=".node circle,.node ellipse,.node path,.node polygon,.node rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}marker{fill:var(--md-mermaid-edge-color)!important}.edgeLabel .label rect{fill:#0000}.label{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.label foreignObject{line-height:normal;overflow:visible}.label div .edgeLabel{color:var(--md-mermaid-label-fg-color)}.edgeLabel,.edgeLabel rect,.label div .edgeLabel{background-color:var(--md-mermaid-label-bg-color)}.edgeLabel,.edgeLabel rect{fill:var(--md-mermaid-label-bg-color);color:var(--md-mermaid-edge-color)}.edgePath .path,.flowchart-link{stroke:var(--md-mermaid-edge-color);stroke-width:.05rem}.edgePath .arrowheadPath{fill:var(--md-mermaid-edge-color);stroke:none}.cluster rect{fill:var(--md-default-fg-color--lightest);stroke:var(--md-default-fg-color--lighter)}.cluster span{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}g #flowchart-circleEnd,g #flowchart-circleStart,g #flowchart-crossEnd,g #flowchart-crossStart,g #flowchart-pointEnd,g #flowchart-pointStart{stroke:none}g.classGroup line,g.classGroup rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}g.classGroup text{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.classLabel .box{fill:var(--md-mermaid-label-bg-color);background-color:var(--md-mermaid-label-bg-color);opacity:1}.classLabel .label{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.node .divider{stroke:var(--md-mermaid-node-fg-color)}.relation{stroke:var(--md-mermaid-edge-color)}.cardinality{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.cardinality text{fill:inherit!important}defs #classDiagram-compositionEnd,defs #classDiagram-compositionStart,defs #classDiagram-dependencyEnd,defs #classDiagram-dependencyStart,defs #classDiagram-extensionEnd,defs #classDiagram-extensionStart{fill:var(--md-mermaid-edge-color)!important;stroke:var(--md-mermaid-edge-color)!important}defs #classDiagram-aggregationEnd,defs #classDiagram-aggregationStart{fill:var(--md-mermaid-label-bg-color)!important;stroke:var(--md-mermaid-edge-color)!important}g.stateGroup rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}g.stateGroup .state-title{fill:var(--md-mermaid-label-fg-color)!important;font-family:var(--md-mermaid-font-family)}g.stateGroup .composit{fill:var(--md-mermaid-label-bg-color)}.nodeLabel{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.node circle.state-end,.node circle.state-start,.start-state{fill:var(--md-mermaid-edge-color);stroke:none}.end-state-inner,.end-state-outer{fill:var(--md-mermaid-edge-color)}.end-state-inner,.node circle.state-end{stroke:var(--md-mermaid-label-bg-color)}.transition{stroke:var(--md-mermaid-edge-color)}[id^=state-fork] rect,[id^=state-join] rect{fill:var(--md-mermaid-edge-color)!important;stroke:none!important}.statediagram-cluster.statediagram-cluster .inner{fill:var(--md-default-bg-color)}.statediagram-cluster rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}.statediagram-state rect.divider{fill:var(--md-default-fg-color--lightest);stroke:var(--md-default-fg-color--lighter)}defs #statediagram-barbEnd{stroke:var(--md-mermaid-edge-color)}.attributeBoxEven,.attributeBoxOdd{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}.entityBox{fill:var(--md-mermaid-label-bg-color);stroke:var(--md-mermaid-node-fg-color)}.entityLabel{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.relationshipLabelBox{fill:var(--md-mermaid-label-bg-color);fill-opacity:1;background-color:var(--md-mermaid-label-bg-color);opacity:1}.relationshipLabel{fill:var(--md-mermaid-label-fg-color)}.relationshipLine{stroke:var(--md-mermaid-edge-color)}defs #ONE_OR_MORE_END *,defs #ONE_OR_MORE_START *,defs #ONLY_ONE_END *,defs #ONLY_ONE_START *,defs #ZERO_OR_MORE_END *,defs #ZERO_OR_MORE_START *,defs #ZERO_OR_ONE_END *,defs #ZERO_OR_ONE_START *{stroke:var(--md-mermaid-edge-color)!important}defs #ZERO_OR_MORE_END circle,defs #ZERO_OR_MORE_START circle{fill:var(--md-mermaid-label-bg-color)}.actor{fill:var(--md-mermaid-sequence-actor-bg-color);stroke:var(--md-mermaid-sequence-actor-border-color)}text.actor>tspan{fill:var(--md-mermaid-sequence-actor-fg-color);font-family:var(--md-mermaid-font-family)}line{stroke:var(--md-mermaid-sequence-actor-line-color)}.actor-man circle,.actor-man line{fill:var(--md-mermaid-sequence-actorman-bg-color);stroke:var(--md-mermaid-sequence-actorman-line-color)}.messageLine0,.messageLine1{stroke:var(--md-mermaid-sequence-message-line-color)}.note{fill:var(--md-mermaid-sequence-note-bg-color);stroke:var(--md-mermaid-sequence-note-border-color)}.loopText,.loopText>tspan,.messageText,.noteText>tspan{stroke:none;font-family:var(--md-mermaid-font-family)!important}.messageText{fill:var(--md-mermaid-sequence-message-fg-color)}.loopText,.loopText>tspan{fill:var(--md-mermaid-sequence-loop-fg-color)}.noteText>tspan{fill:var(--md-mermaid-sequence-note-fg-color)}#arrowhead path{fill:var(--md-mermaid-sequence-message-line-color);stroke:none}.loopLine{fill:var(--md-mermaid-sequence-loop-bg-color);stroke:var(--md-mermaid-sequence-loop-border-color)}.labelBox{fill:var(--md-mermaid-sequence-label-bg-color);stroke:none}.labelText,.labelText>span{fill:var(--md-mermaid-sequence-label-fg-color);font-family:var(--md-mermaid-font-family)}.sequenceNumber{fill:var(--md-mermaid-sequence-number-fg-color)}rect.rect{fill:var(--md-mermaid-sequence-box-bg-color);stroke:none}rect.rect+text.text{fill:var(--md-mermaid-sequence-box-fg-color)}defs #sequencenumber{fill:var(--md-mermaid-sequence-number-bg-color)!important}";var Qr,Aa=0;function Ca(){return typeof mermaid=="undefined"||mermaid instanceof Element?gt("https://unpkg.com/mermaid@10.6.1/dist/mermaid.min.js"):R(void 0)}function _n(e){return e.classList.remove("mermaid"),Qr||(Qr=Ca().pipe(T(()=>mermaid.initialize({startOnLoad:!1,themeCSS:Ln,sequence:{actorFontSize:"16px",messageFontSize:"16px",noteFontSize:"16px"}})),m(()=>{}),Z(1))),Qr.subscribe(()=>no(this,null,function*(){e.classList.add("mermaid");let t=`__mermaid_${Aa++}`,r=S("div",{class:"mermaid"}),o=e.textContent,{svg:n,fn:i}=yield mermaid.render(t,o),s=r.attachShadow({mode:"closed"});s.innerHTML=n,e.replaceWith(r),i==null||i(s)})),Qr.pipe(m(()=>({ref:e})))}var An=S("table");function Cn(e){return e.replaceWith(An),An.replaceWith(vn(e)),R({ref:e})}function ka(e){let t=e.find(r=>r.checked)||e[0];return L(...e.map(r=>h(r,"change").pipe(m(()=>U(`label[for="${r.id}"]`))))).pipe(q(U(`label[for="${t.id}"]`)),m(r=>({active:r})))}function kn(e,{viewport$:t,target$:r}){let o=U(".tabbed-labels",e),n=W(":scope > input",e),i=zr("prev");e.append(i);let s=zr("next");return e.append(s),H(()=>{let a=new x,c=a.pipe(ee(),oe(!0));B([a,Se(e)]).pipe(j(c),Le(1,ge)).subscribe({next([{active:p},l]){let f=Ue(p),{width:u}=le(p);e.style.setProperty("--md-indicator-x",`${f.x}px`),e.style.setProperty("--md-indicator-width",`${u}px`);let d=ir(o);(f.xd.x+l.width)&&o.scrollTo({left:Math.max(0,f.x-16),behavior:"smooth"})},complete(){e.style.removeProperty("--md-indicator-x"),e.style.removeProperty("--md-indicator-width")}}),B([et(o),Se(o)]).pipe(j(c)).subscribe(([p,l])=>{let f=xt(o);i.hidden=p.x<16,s.hidden=p.x>f.width-l.width-16}),L(h(i,"click").pipe(m(()=>-1)),h(s,"click").pipe(m(()=>1))).pipe(j(c)).subscribe(p=>{let{width:l}=le(o);o.scrollBy({left:l*p,behavior:"smooth"})}),r.pipe(j(c),v(p=>n.includes(p))).subscribe(p=>p.click()),o.classList.add("tabbed-labels--linked");for(let p of n){let l=U(`label[for="${p.id}"]`);l.replaceChildren(S("a",{href:`#${l.htmlFor}`,tabIndex:-1},...Array.from(l.childNodes))),h(l.firstElementChild,"click").pipe(j(c),v(f=>!(f.metaKey||f.ctrlKey)),T(f=>{f.preventDefault(),f.stopPropagation()})).subscribe(()=>{history.replaceState({},"",`#${l.htmlFor}`),l.click()})}return G("content.tabs.link")&&a.pipe(Ee(1),ae(t)).subscribe(([{active:p},{offset:l}])=>{let f=p.innerText.trim();if(p.hasAttribute("data-md-switching"))p.removeAttribute("data-md-switching");else{let u=e.offsetTop-l.y;for(let y of W("[data-tabs]"))for(let b of W(":scope > input",y)){let D=U(`label[for="${b.id}"]`);if(D!==p&&D.innerText.trim()===f){D.setAttribute("data-md-switching",""),b.click();break}}window.scrollTo({top:e.offsetTop-u});let d=__md_get("__tabs")||[];__md_set("__tabs",[...new Set([f,...d])])}}),a.pipe(j(c)).subscribe(()=>{for(let p of W("audio, video",e))p.pause()}),ka(n).pipe(T(p=>a.next(p)),A(()=>a.complete()),m(p=>P({ref:e},p)))}).pipe(qe(ie))}function Hn(e,{viewport$:t,target$:r,print$:o}){return L(...W(".annotate:not(.highlight)",e).map(n=>wn(n,{target$:r,print$:o})),...W("pre:not(.mermaid) > code",e).map(n=>On(n,{target$:r,print$:o})),...W("pre.mermaid",e).map(n=>_n(n)),...W("table:not([class])",e).map(n=>Cn(n)),...W("details",e).map(n=>Mn(n,{target$:r,print$:o})),...W("[data-tabs]",e).map(n=>kn(n,{viewport$:t,target$:r})),...W("[title]",e).filter(()=>G("content.tooltips")).map(n=>Be(n)))}function Ha(e,{alert$:t}){return t.pipe(w(r=>L(R(!0),R(!1).pipe(Qe(2e3))).pipe(m(o=>({message:r,active:o})))))}function $n(e,t){let r=U(".md-typeset",e);return H(()=>{let o=new x;return o.subscribe(({message:n,active:i})=>{e.classList.toggle("md-dialog--active",i),r.textContent=n}),Ha(e,t).pipe(T(n=>o.next(n)),A(()=>o.complete()),m(n=>P({ref:e},n)))})}function $a({viewport$:e}){if(!G("header.autohide"))return R(!1);let t=e.pipe(m(({offset:{y:n}})=>n),Ce(2,1),m(([n,i])=>[nMath.abs(i-n.y)>100),m(([,[n]])=>n),X()),o=Ne("search");return B([e,o]).pipe(m(([{offset:n},i])=>n.y>400&&!i),X(),w(n=>n?r:R(!1)),q(!1))}function Pn(e,t){return H(()=>B([Se(e),$a(t)])).pipe(m(([{height:r},o])=>({height:r,hidden:o})),X((r,o)=>r.height===o.height&&r.hidden===o.hidden),Z(1))}function Rn(e,{header$:t,main$:r}){return H(()=>{let o=new x,n=o.pipe(ee(),oe(!0));o.pipe(te("active"),Ze(t)).subscribe(([{active:s},{hidden:a}])=>{e.classList.toggle("md-header--shadow",s&&!a),e.hidden=a});let i=fe(W("[title]",e)).pipe(v(()=>G("content.tooltips")),re(s=>Be(s)));return r.subscribe(o),t.pipe(j(n),m(s=>P({ref:e},s)),Re(i.pipe(j(n))))})}function Pa(e,{viewport$:t,header$:r}){return mr(e,{viewport$:t,header$:r}).pipe(m(({offset:{y:o}})=>{let{height:n}=le(e);return{active:o>=n}}),te("active"))}function In(e,t){return H(()=>{let r=new x;r.subscribe({next({active:n}){e.classList.toggle("md-header__title--active",n)},complete(){e.classList.remove("md-header__title--active")}});let o=ce(".md-content h1");return typeof o=="undefined"?M:Pa(o,t).pipe(T(n=>r.next(n)),A(()=>r.complete()),m(n=>P({ref:e},n)))})}function Fn(e,{viewport$:t,header$:r}){let o=r.pipe(m(({height:i})=>i),X()),n=o.pipe(w(()=>Se(e).pipe(m(({height:i})=>({top:e.offsetTop,bottom:e.offsetTop+i})),te("bottom"))));return B([o,n,t]).pipe(m(([i,{top:s,bottom:a},{offset:{y:c},size:{height:p}}])=>(p=Math.max(0,p-Math.max(0,s-c,i)-Math.max(0,p+c-a)),{offset:s-i,height:p,active:s-i<=c})),X((i,s)=>i.offset===s.offset&&i.height===s.height&&i.active===s.active))}function Ra(e){let t=__md_get("__palette")||{index:e.findIndex(r=>matchMedia(r.getAttribute("data-md-color-media")).matches)};return R(...e).pipe(re(r=>h(r,"change").pipe(m(()=>r))),q(e[Math.max(0,t.index)]),m(r=>({index:e.indexOf(r),color:{media:r.getAttribute("data-md-color-media"),scheme:r.getAttribute("data-md-color-scheme"),primary:r.getAttribute("data-md-color-primary"),accent:r.getAttribute("data-md-color-accent")}})),Z(1))}function jn(e){let t=W("input",e),r=S("meta",{name:"theme-color"});document.head.appendChild(r);let o=S("meta",{name:"color-scheme"});document.head.appendChild(o);let n=At("(prefers-color-scheme: light)");return H(()=>{let i=new x;return i.subscribe(s=>{if(document.body.setAttribute("data-md-color-switching",""),s.color.media==="(prefers-color-scheme)"){let a=matchMedia("(prefers-color-scheme: light)"),c=document.querySelector(a.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']");s.color.scheme=c.getAttribute("data-md-color-scheme"),s.color.primary=c.getAttribute("data-md-color-primary"),s.color.accent=c.getAttribute("data-md-color-accent")}for(let[a,c]of Object.entries(s.color))document.body.setAttribute(`data-md-color-${a}`,c);for(let a=0;a{let s=Oe("header"),a=window.getComputedStyle(s);return o.content=a.colorScheme,a.backgroundColor.match(/\d+/g).map(c=>(+c).toString(16).padStart(2,"0")).join("")})).subscribe(s=>r.content=`#${s}`),i.pipe(Me(ie)).subscribe(()=>{document.body.removeAttribute("data-md-color-switching")}),Ra(t).pipe(j(n.pipe(Ee(1))),at(),T(s=>i.next(s)),A(()=>i.complete()),m(s=>P({ref:e},s)))})}function Wn(e,{progress$:t}){return H(()=>{let r=new x;return r.subscribe(({value:o})=>{e.style.setProperty("--md-progress-value",`${o}`)}),t.pipe(T(o=>r.next({value:o})),A(()=>r.complete()),m(o=>({ref:e,value:o})))})}var Yr=jt(Kr());function Ia(e){e.setAttribute("data-md-copying","");let t=e.closest("[data-copy]"),r=t?t.getAttribute("data-copy"):e.innerText;return e.removeAttribute("data-md-copying"),r.trimEnd()}function Un({alert$:e}){Yr.default.isSupported()&&new I(t=>{new Yr.default("[data-clipboard-target], [data-clipboard-text]",{text:r=>r.getAttribute("data-clipboard-text")||Ia(U(r.getAttribute("data-clipboard-target")))}).on("success",r=>t.next(r))}).pipe(T(t=>{t.trigger.focus()}),m(()=>we("clipboard.copied"))).subscribe(e)}function Fa(e){if(e.length<2)return[""];let[t,r]=[...e].sort((n,i)=>n.length-i.length).map(n=>n.replace(/[^/]+$/,"")),o=0;if(t===r)o=t.length;else for(;t.charCodeAt(o)===r.charCodeAt(o);)o++;return e.map(n=>n.replace(t.slice(0,o),""))}function ur(e){let t=__md_get("__sitemap",sessionStorage,e);if(t)return R(t);{let r=he();return on(new URL("sitemap.xml",e||r.base)).pipe(m(o=>Fa(W("loc",o).map(n=>n.textContent))),xe(()=>M),$e([]),T(o=>__md_set("__sitemap",o,sessionStorage,e)))}}function Nn(e){let t=ce("[rel=canonical]",e);typeof t!="undefined"&&(t.href=t.href.replace("//localhost:","//127.0.0.1:"));let r=new Map;for(let o of W(":scope > *",e)){let n=o.outerHTML;for(let i of["href","src"]){let s=o.getAttribute(i);if(s===null)continue;let a=new URL(s,t==null?void 0:t.href),c=o.cloneNode();c.setAttribute(i,`${a}`),n=c.outerHTML;break}r.set(n,o)}return r}function Dn({location$:e,viewport$:t,progress$:r}){let o=he();if(location.protocol==="file:")return M;let n=ur().pipe(m(l=>l.map(f=>`${new URL(f,o.base)}`))),i=h(document.body,"click").pipe(ae(n),w(([l,f])=>{if(!(l.target instanceof Element))return M;let u=l.target.closest("a");if(u===null)return M;if(u.target||l.metaKey||l.ctrlKey)return M;let d=new URL(u.href);return d.search=d.hash="",f.includes(`${d}`)?(l.preventDefault(),R(new URL(u.href))):M}),de());i.pipe(ue(1)).subscribe(()=>{let l=ce("link[rel=icon]");typeof l!="undefined"&&(l.href=l.href)}),h(window,"beforeunload").subscribe(()=>{history.scrollRestoration="auto"}),i.pipe(ae(t)).subscribe(([l,{offset:f}])=>{history.scrollRestoration="manual",history.replaceState(f,""),history.pushState(null,"",l)}),i.subscribe(e);let s=e.pipe(q(me()),te("pathname"),Ee(1),w(l=>lr(l,{progress$:r}).pipe(xe(()=>(st(l,!0),M))))),a=new DOMParser,c=s.pipe(w(l=>l.text()),w(l=>{let f=a.parseFromString(l,"text/html");for(let b of["[data-md-component=announce]","[data-md-component=container]","[data-md-component=header-topic]","[data-md-component=outdated]","[data-md-component=logo]","[data-md-component=skip]",...G("navigation.tabs.sticky")?["[data-md-component=tabs]"]:[]]){let D=ce(b),Q=ce(b,f);typeof D!="undefined"&&typeof Q!="undefined"&&D.replaceWith(Q)}let u=Nn(document.head),d=Nn(f.head);for(let[b,D]of d)D.getAttribute("rel")==="stylesheet"||D.hasAttribute("src")||(u.has(b)?u.delete(b):document.head.appendChild(D));for(let b of u.values())b.getAttribute("rel")==="stylesheet"||b.hasAttribute("src")||b.remove();let y=Oe("container");return We(W("script",y)).pipe(w(b=>{let D=f.createElement("script");if(b.src){for(let Q of b.getAttributeNames())D.setAttribute(Q,b.getAttribute(Q));return b.replaceWith(D),new I(Q=>{D.onload=()=>Q.complete()})}else return D.textContent=b.textContent,b.replaceWith(D),M}),ee(),oe(f))}),de());return h(window,"popstate").pipe(m(me)).subscribe(e),e.pipe(q(me()),Ce(2,1),v(([l,f])=>l.pathname===f.pathname&&l.hash!==f.hash),m(([,l])=>l)).subscribe(l=>{var f,u;history.state!==null||!l.hash?window.scrollTo(0,(u=(f=history.state)==null?void 0:f.y)!=null?u:0):(history.scrollRestoration="auto",pr(l.hash),history.scrollRestoration="manual")}),e.pipe(Ir(i),q(me()),Ce(2,1),v(([l,f])=>l.pathname===f.pathname&&l.hash===f.hash),m(([,l])=>l)).subscribe(l=>{history.scrollRestoration="auto",pr(l.hash),history.scrollRestoration="manual",history.back()}),c.pipe(ae(e)).subscribe(([,l])=>{var f,u;history.state!==null||!l.hash?window.scrollTo(0,(u=(f=history.state)==null?void 0:f.y)!=null?u:0):pr(l.hash)}),t.pipe(te("offset"),ye(100)).subscribe(({offset:l})=>{history.replaceState(l,"")}),c}var qn=jt(zn());function Kn(e){let t=e.separator.split("|").map(n=>n.replace(/(\(\?[!=<][^)]+\))/g,"").length===0?"\uFFFD":n).join("|"),r=new RegExp(t,"img"),o=(n,i,s)=>`${i}${s}`;return n=>{n=n.replace(/[\s*+\-:~^]+/g," ").trim();let i=new RegExp(`(^|${e.separator}|)(${n.replace(/[|\\{}()[\]^$+*?.-]/g,"\\$&").replace(r,"|")})`,"img");return s=>(0,qn.default)(s).replace(i,o).replace(/<\/mark>(\s+)]*>/img,"$1")}}function Ht(e){return e.type===1}function dr(e){return e.type===3}function Qn(e,t){let r=ln(e);return L(R(location.protocol!=="file:"),Ne("search")).pipe(Pe(o=>o),w(()=>t)).subscribe(({config:o,docs:n})=>r.next({type:0,data:{config:o,docs:n,options:{suggest:G("search.suggest")}}})),r}function Yn({document$:e}){let t=he(),r=De(new URL("../versions.json",t.base)).pipe(xe(()=>M)),o=r.pipe(m(n=>{let[,i]=t.base.match(/([^/]+)\/?$/);return n.find(({version:s,aliases:a})=>s===i||a.includes(i))||n[0]}));r.pipe(m(n=>new Map(n.map(i=>[`${new URL(`../${i.version}/`,t.base)}`,i]))),w(n=>h(document.body,"click").pipe(v(i=>!i.metaKey&&!i.ctrlKey),ae(o),w(([i,s])=>{if(i.target instanceof Element){let a=i.target.closest("a");if(a&&!a.target&&n.has(a.href)){let c=a.href;return!i.target.closest(".md-version")&&n.get(c)===s?M:(i.preventDefault(),R(c))}}return M}),w(i=>{let{version:s}=n.get(i);return ur(new URL(i)).pipe(m(a=>{let p=me().href.replace(t.base,"");return a.includes(p.split("#")[0])?new URL(`../${s}/${p}`,t.base):new URL(i)}))})))).subscribe(n=>st(n,!0)),B([r,o]).subscribe(([n,i])=>{U(".md-header__topic").appendChild(gn(n,i))}),e.pipe(w(()=>o)).subscribe(n=>{var s;let i=__md_get("__outdated",sessionStorage);if(i===null){i=!0;let a=((s=t.version)==null?void 0:s.default)||"latest";Array.isArray(a)||(a=[a]);e:for(let c of a)for(let p of n.aliases.concat(n.version))if(new RegExp(c,"i").test(p)){i=!1;break e}__md_set("__outdated",i,sessionStorage)}if(i)for(let a of ne("outdated"))a.hidden=!1})}function Da(e,{worker$:t}){let{searchParams:r}=me();r.has("q")&&(Ye("search",!0),e.value=r.get("q"),e.focus(),Ne("search").pipe(Pe(i=>!i)).subscribe(()=>{let i=me();i.searchParams.delete("q"),history.replaceState({},"",`${i}`)}));let o=vt(e),n=L(t.pipe(Pe(Ht)),h(e,"keyup"),o).pipe(m(()=>e.value),X());return B([n,o]).pipe(m(([i,s])=>({value:i,focus:s})),Z(1))}function Bn(e,{worker$:t}){let r=new x,o=r.pipe(ee(),oe(!0));B([t.pipe(Pe(Ht)),r],(i,s)=>s).pipe(te("value")).subscribe(({value:i})=>t.next({type:2,data:i})),r.pipe(te("focus")).subscribe(({focus:i})=>{i&&Ye("search",i)}),h(e.form,"reset").pipe(j(o)).subscribe(()=>e.focus());let n=U("header [for=__search]");return h(n,"click").subscribe(()=>e.focus()),Da(e,{worker$:t}).pipe(T(i=>r.next(i)),A(()=>r.complete()),m(i=>P({ref:e},i)),Z(1))}function Gn(e,{worker$:t,query$:r}){let o=new x,n=Go(e.parentElement).pipe(v(Boolean)),i=e.parentElement,s=U(":scope > :first-child",e),a=U(":scope > :last-child",e);Ne("search").subscribe(l=>a.setAttribute("role",l?"list":"presentation")),o.pipe(ae(r),Wr(t.pipe(Pe(Ht)))).subscribe(([{items:l},{value:f}])=>{switch(l.length){case 0:s.textContent=f.length?we("search.result.none"):we("search.result.placeholder");break;case 1:s.textContent=we("search.result.one");break;default:let u=ar(l.length);s.textContent=we("search.result.other",u)}});let c=o.pipe(T(()=>a.innerHTML=""),w(({items:l})=>L(R(...l.slice(0,10)),R(...l.slice(10)).pipe(Ce(4),Nr(n),w(([f])=>f)))),m(hn),de());return c.subscribe(l=>a.appendChild(l)),c.pipe(re(l=>{let f=ce("details",l);return typeof f=="undefined"?M:h(f,"toggle").pipe(j(o),m(()=>f))})).subscribe(l=>{l.open===!1&&l.offsetTop<=i.scrollTop&&i.scrollTo({top:l.offsetTop})}),t.pipe(v(dr),m(({data:l})=>l)).pipe(T(l=>o.next(l)),A(()=>o.complete()),m(l=>P({ref:e},l)))}function Va(e,{query$:t}){return t.pipe(m(({value:r})=>{let o=me();return o.hash="",r=r.replace(/\s+/g,"+").replace(/&/g,"%26").replace(/=/g,"%3D"),o.search=`q=${r}`,{url:o}}))}function Jn(e,t){let r=new x,o=r.pipe(ee(),oe(!0));return r.subscribe(({url:n})=>{e.setAttribute("data-clipboard-text",e.href),e.href=`${n}`}),h(e,"click").pipe(j(o)).subscribe(n=>n.preventDefault()),Va(e,t).pipe(T(n=>r.next(n)),A(()=>r.complete()),m(n=>P({ref:e},n)))}function Xn(e,{worker$:t,keyboard$:r}){let o=new x,n=Oe("search-query"),i=L(h(n,"keydown"),h(n,"focus")).pipe(Me(ie),m(()=>n.value),X());return o.pipe(Ze(i),m(([{suggest:a},c])=>{let p=c.split(/([\s-]+)/);if(a!=null&&a.length&&p[p.length-1]){let l=a[a.length-1];l.startsWith(p[p.length-1])&&(p[p.length-1]=l)}else p.length=0;return p})).subscribe(a=>e.innerHTML=a.join("").replace(/\s/g," ")),r.pipe(v(({mode:a})=>a==="search")).subscribe(a=>{switch(a.type){case"ArrowRight":e.innerText.length&&n.selectionStart===n.value.length&&(n.value=e.innerText);break}}),t.pipe(v(dr),m(({data:a})=>a)).pipe(T(a=>o.next(a)),A(()=>o.complete()),m(()=>({ref:e})))}function Zn(e,{index$:t,keyboard$:r}){let o=he();try{let n=Qn(o.search,t),i=Oe("search-query",e),s=Oe("search-result",e);h(e,"click").pipe(v(({target:c})=>c instanceof Element&&!!c.closest("a"))).subscribe(()=>Ye("search",!1)),r.pipe(v(({mode:c})=>c==="search")).subscribe(c=>{let p=Ie();switch(c.type){case"Enter":if(p===i){let l=new Map;for(let f of W(":first-child [href]",s)){let u=f.firstElementChild;l.set(f,parseFloat(u.getAttribute("data-md-score")))}if(l.size){let[[f]]=[...l].sort(([,u],[,d])=>d-u);f.click()}c.claim()}break;case"Escape":case"Tab":Ye("search",!1),i.blur();break;case"ArrowUp":case"ArrowDown":if(typeof p=="undefined")i.focus();else{let l=[i,...W(":not(details) > [href], summary, details[open] [href]",s)],f=Math.max(0,(Math.max(0,l.indexOf(p))+l.length+(c.type==="ArrowUp"?-1:1))%l.length);l[f].focus()}c.claim();break;default:i!==Ie()&&i.focus()}}),r.pipe(v(({mode:c})=>c==="global")).subscribe(c=>{switch(c.type){case"f":case"s":case"/":i.focus(),i.select(),c.claim();break}});let a=Bn(i,{worker$:n});return L(a,Gn(s,{worker$:n,query$:a})).pipe(Re(...ne("search-share",e).map(c=>Jn(c,{query$:a})),...ne("search-suggest",e).map(c=>Xn(c,{worker$:n,keyboard$:r}))))}catch(n){return e.hidden=!0,Ke}}function ei(e,{index$:t,location$:r}){return B([t,r.pipe(q(me()),v(o=>!!o.searchParams.get("h")))]).pipe(m(([o,n])=>Kn(o.config)(n.searchParams.get("h"))),m(o=>{var s;let n=new Map,i=document.createNodeIterator(e,NodeFilter.SHOW_TEXT);for(let a=i.nextNode();a;a=i.nextNode())if((s=a.parentElement)!=null&&s.offsetHeight){let c=a.textContent,p=o(c);p.length>c.length&&n.set(a,p)}for(let[a,c]of n){let{childNodes:p}=S("span",null,c);a.replaceWith(...Array.from(p))}return{ref:e,nodes:n}}))}function za(e,{viewport$:t,main$:r}){let o=e.closest(".md-grid"),n=o.offsetTop-o.parentElement.offsetTop;return B([r,t]).pipe(m(([{offset:i,height:s},{offset:{y:a}}])=>(s=s+Math.min(n,Math.max(0,a-i))-n,{height:s,locked:a>=i+n})),X((i,s)=>i.height===s.height&&i.locked===s.locked))}function Br(e,o){var n=o,{header$:t}=n,r=oo(n,["header$"]);let i=U(".md-sidebar__scrollwrap",e),{y:s}=Ue(i);return H(()=>{let a=new x,c=a.pipe(ee(),oe(!0)),p=a.pipe(Le(0,ge));return p.pipe(ae(t)).subscribe({next([{height:l},{height:f}]){i.style.height=`${l-2*s}px`,e.style.top=`${f}px`},complete(){i.style.height="",e.style.top=""}}),p.pipe(Pe()).subscribe(()=>{for(let l of W(".md-nav__link--active[href]",e)){if(!l.clientHeight)continue;let f=l.closest(".md-sidebar__scrollwrap");if(typeof f!="undefined"){let u=l.offsetTop-f.offsetTop,{height:d}=le(f);f.scrollTo({top:u-d/2})}}}),fe(W("label[tabindex]",e)).pipe(re(l=>h(l,"click").pipe(Me(ie),m(()=>l),j(c)))).subscribe(l=>{let f=U(`[id="${l.htmlFor}"]`);U(`[aria-labelledby="${l.id}"]`).setAttribute("aria-expanded",`${f.checked}`)}),za(e,r).pipe(T(l=>a.next(l)),A(()=>a.complete()),m(l=>P({ref:e},l)))})}function ti(e,t){if(typeof t!="undefined"){let r=`https://api.github.com/repos/${e}/${t}`;return Lt(De(`${r}/releases/latest`).pipe(xe(()=>M),m(o=>({version:o.tag_name})),$e({})),De(r).pipe(xe(()=>M),m(o=>({stars:o.stargazers_count,forks:o.forks_count})),$e({}))).pipe(m(([o,n])=>P(P({},o),n)))}else{let r=`https://api.github.com/users/${e}`;return De(r).pipe(m(o=>({repositories:o.public_repos})),$e({}))}}function ri(e,t){let r=`https://${e}/api/v4/projects/${encodeURIComponent(t)}`;return De(r).pipe(xe(()=>M),m(({star_count:o,forks_count:n})=>({stars:o,forks:n})),$e({}))}function oi(e){let t=e.match(/^.+github\.com\/([^/]+)\/?([^/]+)?/i);if(t){let[,r,o]=t;return ti(r,o)}if(t=e.match(/^.+?([^/]*gitlab[^/]+)\/(.+?)\/?$/i),t){let[,r,o]=t;return ri(r,o)}return M}var qa;function Ka(e){return qa||(qa=H(()=>{let t=__md_get("__source",sessionStorage);if(t)return R(t);if(ne("consent").length){let o=__md_get("__consent");if(!(o&&o.github))return M}return oi(e.href).pipe(T(o=>__md_set("__source",o,sessionStorage)))}).pipe(xe(()=>M),v(t=>Object.keys(t).length>0),m(t=>({facts:t})),Z(1)))}function ni(e){let t=U(":scope > :last-child",e);return H(()=>{let r=new x;return r.subscribe(({facts:o})=>{t.appendChild(bn(o)),t.classList.add("md-source__repository--active")}),Ka(e).pipe(T(o=>r.next(o)),A(()=>r.complete()),m(o=>P({ref:e},o)))})}function Qa(e,{viewport$:t,header$:r}){return Se(document.body).pipe(w(()=>mr(e,{header$:r,viewport$:t})),m(({offset:{y:o}})=>({hidden:o>=10})),te("hidden"))}function ii(e,t){return H(()=>{let r=new x;return r.subscribe({next({hidden:o}){e.hidden=o},complete(){e.hidden=!1}}),(G("navigation.tabs.sticky")?R({hidden:!1}):Qa(e,t)).pipe(T(o=>r.next(o)),A(()=>r.complete()),m(o=>P({ref:e},o)))})}function Ya(e,{viewport$:t,header$:r}){let o=new Map,n=W("[href^=\\#]",e);for(let a of n){let c=decodeURIComponent(a.hash.substring(1)),p=ce(`[id="${c}"]`);typeof p!="undefined"&&o.set(a,p)}let i=r.pipe(te("height"),m(({height:a})=>{let c=Oe("main"),p=U(":scope > :first-child",c);return a+.8*(p.offsetTop-c.offsetTop)}),de());return Se(document.body).pipe(te("height"),w(a=>H(()=>{let c=[];return R([...o].reduce((p,[l,f])=>{for(;c.length&&o.get(c[c.length-1]).tagName>=f.tagName;)c.pop();let u=f.offsetTop;for(;!u&&f.parentElement;)f=f.parentElement,u=f.offsetTop;let d=f.offsetParent;for(;d;d=d.offsetParent)u+=d.offsetTop;return p.set([...c=[...c,l]].reverse(),u)},new Map))}).pipe(m(c=>new Map([...c].sort(([,p],[,l])=>p-l))),Ze(i),w(([c,p])=>t.pipe(Fr(([l,f],{offset:{y:u},size:d})=>{let y=u+d.height>=Math.floor(a.height);for(;f.length;){let[,b]=f[0];if(b-p=u&&!y)f=[l.pop(),...f];else break}return[l,f]},[[],[...c]]),X((l,f)=>l[0]===f[0]&&l[1]===f[1])))))).pipe(m(([a,c])=>({prev:a.map(([p])=>p),next:c.map(([p])=>p)})),q({prev:[],next:[]}),Ce(2,1),m(([a,c])=>a.prev.length{let i=new x,s=i.pipe(ee(),oe(!0));if(i.subscribe(({prev:a,next:c})=>{for(let[p]of c)p.classList.remove("md-nav__link--passed"),p.classList.remove("md-nav__link--active");for(let[p,[l]]of a.entries())l.classList.add("md-nav__link--passed"),l.classList.toggle("md-nav__link--active",p===a.length-1)}),G("toc.follow")){let a=L(t.pipe(ye(1),m(()=>{})),t.pipe(ye(250),m(()=>"smooth")));i.pipe(v(({prev:c})=>c.length>0),Ze(o.pipe(Me(ie))),ae(a)).subscribe(([[{prev:c}],p])=>{let[l]=c[c.length-1];if(l.offsetHeight){let f=sr(l);if(typeof f!="undefined"){let u=l.offsetTop-f.offsetTop,{height:d}=le(f);f.scrollTo({top:u-d/2,behavior:p})}}})}return G("navigation.tracking")&&t.pipe(j(s),te("offset"),ye(250),Ee(1),j(n.pipe(Ee(1))),at({delay:250}),ae(i)).subscribe(([,{prev:a}])=>{let c=me(),p=a[a.length-1];if(p&&p.length){let[l]=p,{hash:f}=new URL(l.href);c.hash!==f&&(c.hash=f,history.replaceState({},"",`${c}`))}else c.hash="",history.replaceState({},"",`${c}`)}),Ya(e,{viewport$:t,header$:r}).pipe(T(a=>i.next(a)),A(()=>i.complete()),m(a=>P({ref:e},a)))})}function Ba(e,{viewport$:t,main$:r,target$:o}){let n=t.pipe(m(({offset:{y:s}})=>s),Ce(2,1),m(([s,a])=>s>a&&a>0),X()),i=r.pipe(m(({active:s})=>s));return B([i,n]).pipe(m(([s,a])=>!(s&&a)),X(),j(o.pipe(Ee(1))),oe(!0),at({delay:250}),m(s=>({hidden:s})))}function si(e,{viewport$:t,header$:r,main$:o,target$:n}){let i=new x,s=i.pipe(ee(),oe(!0));return i.subscribe({next({hidden:a}){e.hidden=a,a?(e.setAttribute("tabindex","-1"),e.blur()):e.removeAttribute("tabindex")},complete(){e.style.top="",e.hidden=!0,e.removeAttribute("tabindex")}}),r.pipe(j(s),te("height")).subscribe(({height:a})=>{e.style.top=`${a+16}px`}),h(e,"click").subscribe(a=>{a.preventDefault(),window.scrollTo({top:0})}),Ba(e,{viewport$:t,main$:o,target$:n}).pipe(T(a=>i.next(a)),A(()=>i.complete()),m(a=>P({ref:e},a)))}function ci({document$:e}){e.pipe(w(()=>W(".md-ellipsis")),re(t=>yt(t).pipe(j(e.pipe(Ee(1))),v(r=>r),m(()=>t),ue(1))),v(t=>t.offsetWidth{let r=t.innerText,o=t.closest("a")||t;return o.title=r,Be(o).pipe(j(e.pipe(Ee(1))),A(()=>o.removeAttribute("title")))})).subscribe(),e.pipe(w(()=>W(".md-status")),re(t=>Be(t))).subscribe()}function pi({document$:e,tablet$:t}){e.pipe(w(()=>W(".md-toggle--indeterminate")),T(r=>{r.indeterminate=!0,r.checked=!1}),re(r=>h(r,"change").pipe(Ur(()=>r.classList.contains("md-toggle--indeterminate")),m(()=>r))),ae(t)).subscribe(([r,o])=>{r.classList.remove("md-toggle--indeterminate"),o&&(r.checked=!1)})}function Ga(){return/(iPad|iPhone|iPod)/.test(navigator.userAgent)}function li({document$:e}){e.pipe(w(()=>W("[data-md-scrollfix]")),T(t=>t.removeAttribute("data-md-scrollfix")),v(Ga),re(t=>h(t,"touchstart").pipe(m(()=>t)))).subscribe(t=>{let r=t.scrollTop;r===0?t.scrollTop=1:r+t.offsetHeight===t.scrollHeight&&(t.scrollTop=r-1)})}function mi({viewport$:e,tablet$:t}){B([Ne("search"),t]).pipe(m(([r,o])=>r&&!o),w(r=>R(r).pipe(Qe(r?400:100))),ae(e)).subscribe(([r,{offset:{y:o}}])=>{if(r)document.body.setAttribute("data-md-scrolllock",""),document.body.style.top=`-${o}px`;else{let n=-1*parseInt(document.body.style.top,10);document.body.removeAttribute("data-md-scrolllock"),document.body.style.top="",n&&window.scrollTo(0,n)}})}Object.entries||(Object.entries=function(e){let t=[];for(let r of Object.keys(e))t.push([r,e[r]]);return t});Object.values||(Object.values=function(e){let t=[];for(let r of Object.keys(e))t.push(e[r]);return t});typeof Element!="undefined"&&(Element.prototype.scrollTo||(Element.prototype.scrollTo=function(e,t){typeof e=="object"?(this.scrollLeft=e.left,this.scrollTop=e.top):(this.scrollLeft=e,this.scrollTop=t)}),Element.prototype.replaceWith||(Element.prototype.replaceWith=function(...e){let t=this.parentNode;if(t){e.length===0&&t.removeChild(this);for(let r=e.length-1;r>=0;r--){let o=e[r];typeof o=="string"?o=document.createTextNode(o):o.parentNode&&o.parentNode.removeChild(o),r?t.insertBefore(this.previousSibling,o):t.replaceChild(o,this)}}}));function Ja(){return location.protocol==="file:"?gt(`${new URL("search/search_index.js",Gr.base)}`).pipe(m(()=>__index),Z(1)):De(new URL("search/search_index.json",Gr.base))}document.documentElement.classList.remove("no-js");document.documentElement.classList.add("js");var rt=zo(),Pt=Zo(),wt=tn(Pt),Jr=Xo(),_e=pn(),hr=At("(min-width: 960px)"),ui=At("(min-width: 1220px)"),di=rn(),Gr=he(),hi=document.forms.namedItem("search")?Ja():Ke,Xr=new x;Un({alert$:Xr});var Zr=new x;G("navigation.instant")&&Dn({location$:Pt,viewport$:_e,progress$:Zr}).subscribe(rt);var fi;((fi=Gr.version)==null?void 0:fi.provider)==="mike"&&Yn({document$:rt});L(Pt,wt).pipe(Qe(125)).subscribe(()=>{Ye("drawer",!1),Ye("search",!1)});Jr.pipe(v(({mode:e})=>e==="global")).subscribe(e=>{switch(e.type){case"p":case",":let t=ce("link[rel=prev]");typeof t!="undefined"&&st(t);break;case"n":case".":let r=ce("link[rel=next]");typeof r!="undefined"&&st(r);break;case"Enter":let o=Ie();o instanceof HTMLLabelElement&&o.click()}});ci({document$:rt});pi({document$:rt,tablet$:hr});li({document$:rt});mi({viewport$:_e,tablet$:hr});var tt=Pn(Oe("header"),{viewport$:_e}),$t=rt.pipe(m(()=>Oe("main")),w(e=>Fn(e,{viewport$:_e,header$:tt})),Z(1)),Xa=L(...ne("consent").map(e=>fn(e,{target$:wt})),...ne("dialog").map(e=>$n(e,{alert$:Xr})),...ne("header").map(e=>Rn(e,{viewport$:_e,header$:tt,main$:$t})),...ne("palette").map(e=>jn(e)),...ne("progress").map(e=>Wn(e,{progress$:Zr})),...ne("search").map(e=>Zn(e,{index$:hi,keyboard$:Jr})),...ne("source").map(e=>ni(e))),Za=H(()=>L(...ne("announce").map(e=>mn(e)),...ne("content").map(e=>Hn(e,{viewport$:_e,target$:wt,print$:di})),...ne("content").map(e=>G("search.highlight")?ei(e,{index$:hi,location$:Pt}):M),...ne("header-title").map(e=>In(e,{viewport$:_e,header$:tt})),...ne("sidebar").map(e=>e.getAttribute("data-md-type")==="navigation"?Dr(ui,()=>Br(e,{viewport$:_e,header$:tt,main$:$t})):Dr(hr,()=>Br(e,{viewport$:_e,header$:tt,main$:$t}))),...ne("tabs").map(e=>ii(e,{viewport$:_e,header$:tt})),...ne("toc").map(e=>ai(e,{viewport$:_e,header$:tt,main$:$t,target$:wt})),...ne("top").map(e=>si(e,{viewport$:_e,header$:tt,main$:$t,target$:wt})))),bi=rt.pipe(w(()=>Za),Re(Xa),Z(1));bi.subscribe();window.document$=rt;window.location$=Pt;window.target$=wt;window.keyboard$=Jr;window.viewport$=_e;window.tablet$=hr;window.screen$=ui;window.print$=di;window.alert$=Xr;window.progress$=Zr;window.component$=bi;})(); +//# sourceMappingURL=bundle.d7c377c4.min.js.map + diff --git a/assets/javascripts/bundle.d7c377c4.min.js.map b/assets/javascripts/bundle.d7c377c4.min.js.map new file mode 100644 index 00000000..a57d388a --- /dev/null +++ b/assets/javascripts/bundle.d7c377c4.min.js.map @@ -0,0 +1,7 @@ +{ + "version": 3, + "sources": ["node_modules/focus-visible/dist/focus-visible.js", "node_modules/clipboard/dist/clipboard.js", "node_modules/escape-html/index.js", "src/templates/assets/javascripts/bundle.ts", "node_modules/rxjs/node_modules/tslib/tslib.es6.js", "node_modules/rxjs/src/internal/util/isFunction.ts", "node_modules/rxjs/src/internal/util/createErrorClass.ts", "node_modules/rxjs/src/internal/util/UnsubscriptionError.ts", "node_modules/rxjs/src/internal/util/arrRemove.ts", "node_modules/rxjs/src/internal/Subscription.ts", "node_modules/rxjs/src/internal/config.ts", "node_modules/rxjs/src/internal/scheduler/timeoutProvider.ts", "node_modules/rxjs/src/internal/util/reportUnhandledError.ts", "node_modules/rxjs/src/internal/util/noop.ts", "node_modules/rxjs/src/internal/NotificationFactories.ts", "node_modules/rxjs/src/internal/util/errorContext.ts", "node_modules/rxjs/src/internal/Subscriber.ts", "node_modules/rxjs/src/internal/symbol/observable.ts", "node_modules/rxjs/src/internal/util/identity.ts", "node_modules/rxjs/src/internal/util/pipe.ts", "node_modules/rxjs/src/internal/Observable.ts", "node_modules/rxjs/src/internal/util/lift.ts", "node_modules/rxjs/src/internal/operators/OperatorSubscriber.ts", "node_modules/rxjs/src/internal/scheduler/animationFrameProvider.ts", "node_modules/rxjs/src/internal/util/ObjectUnsubscribedError.ts", "node_modules/rxjs/src/internal/Subject.ts", "node_modules/rxjs/src/internal/scheduler/dateTimestampProvider.ts", "node_modules/rxjs/src/internal/ReplaySubject.ts", "node_modules/rxjs/src/internal/scheduler/Action.ts", "node_modules/rxjs/src/internal/scheduler/intervalProvider.ts", "node_modules/rxjs/src/internal/scheduler/AsyncAction.ts", "node_modules/rxjs/src/internal/Scheduler.ts", "node_modules/rxjs/src/internal/scheduler/AsyncScheduler.ts", "node_modules/rxjs/src/internal/scheduler/async.ts", "node_modules/rxjs/src/internal/scheduler/AnimationFrameAction.ts", "node_modules/rxjs/src/internal/scheduler/AnimationFrameScheduler.ts", "node_modules/rxjs/src/internal/scheduler/animationFrame.ts", "node_modules/rxjs/src/internal/observable/empty.ts", "node_modules/rxjs/src/internal/util/isScheduler.ts", "node_modules/rxjs/src/internal/util/args.ts", "node_modules/rxjs/src/internal/util/isArrayLike.ts", "node_modules/rxjs/src/internal/util/isPromise.ts", "node_modules/rxjs/src/internal/util/isInteropObservable.ts", "node_modules/rxjs/src/internal/util/isAsyncIterable.ts", "node_modules/rxjs/src/internal/util/throwUnobservableError.ts", "node_modules/rxjs/src/internal/symbol/iterator.ts", "node_modules/rxjs/src/internal/util/isIterable.ts", "node_modules/rxjs/src/internal/util/isReadableStreamLike.ts", "node_modules/rxjs/src/internal/observable/innerFrom.ts", "node_modules/rxjs/src/internal/util/executeSchedule.ts", "node_modules/rxjs/src/internal/operators/observeOn.ts", "node_modules/rxjs/src/internal/operators/subscribeOn.ts", "node_modules/rxjs/src/internal/scheduled/scheduleObservable.ts", "node_modules/rxjs/src/internal/scheduled/schedulePromise.ts", "node_modules/rxjs/src/internal/scheduled/scheduleArray.ts", "node_modules/rxjs/src/internal/scheduled/scheduleIterable.ts", "node_modules/rxjs/src/internal/scheduled/scheduleAsyncIterable.ts", "node_modules/rxjs/src/internal/scheduled/scheduleReadableStreamLike.ts", "node_modules/rxjs/src/internal/scheduled/scheduled.ts", "node_modules/rxjs/src/internal/observable/from.ts", "node_modules/rxjs/src/internal/observable/of.ts", "node_modules/rxjs/src/internal/observable/throwError.ts", "node_modules/rxjs/src/internal/util/EmptyError.ts", "node_modules/rxjs/src/internal/util/isDate.ts", "node_modules/rxjs/src/internal/operators/map.ts", "node_modules/rxjs/src/internal/util/mapOneOrManyArgs.ts", "node_modules/rxjs/src/internal/util/argsArgArrayOrObject.ts", "node_modules/rxjs/src/internal/util/createObject.ts", "node_modules/rxjs/src/internal/observable/combineLatest.ts", "node_modules/rxjs/src/internal/operators/mergeInternals.ts", "node_modules/rxjs/src/internal/operators/mergeMap.ts", "node_modules/rxjs/src/internal/operators/mergeAll.ts", "node_modules/rxjs/src/internal/operators/concatAll.ts", "node_modules/rxjs/src/internal/observable/concat.ts", "node_modules/rxjs/src/internal/observable/defer.ts", "node_modules/rxjs/src/internal/observable/fromEvent.ts", "node_modules/rxjs/src/internal/observable/fromEventPattern.ts", "node_modules/rxjs/src/internal/observable/timer.ts", "node_modules/rxjs/src/internal/observable/merge.ts", "node_modules/rxjs/src/internal/observable/never.ts", "node_modules/rxjs/src/internal/util/argsOrArgArray.ts", "node_modules/rxjs/src/internal/operators/filter.ts", "node_modules/rxjs/src/internal/observable/zip.ts", "node_modules/rxjs/src/internal/operators/audit.ts", "node_modules/rxjs/src/internal/operators/auditTime.ts", "node_modules/rxjs/src/internal/operators/bufferCount.ts", "node_modules/rxjs/src/internal/operators/catchError.ts", "node_modules/rxjs/src/internal/operators/scanInternals.ts", "node_modules/rxjs/src/internal/operators/combineLatest.ts", "node_modules/rxjs/src/internal/operators/combineLatestWith.ts", "node_modules/rxjs/src/internal/operators/debounceTime.ts", "node_modules/rxjs/src/internal/operators/defaultIfEmpty.ts", "node_modules/rxjs/src/internal/operators/take.ts", "node_modules/rxjs/src/internal/operators/ignoreElements.ts", "node_modules/rxjs/src/internal/operators/mapTo.ts", "node_modules/rxjs/src/internal/operators/delayWhen.ts", "node_modules/rxjs/src/internal/operators/delay.ts", "node_modules/rxjs/src/internal/operators/distinctUntilChanged.ts", "node_modules/rxjs/src/internal/operators/distinctUntilKeyChanged.ts", "node_modules/rxjs/src/internal/operators/throwIfEmpty.ts", "node_modules/rxjs/src/internal/operators/endWith.ts", "node_modules/rxjs/src/internal/operators/finalize.ts", "node_modules/rxjs/src/internal/operators/first.ts", "node_modules/rxjs/src/internal/operators/takeLast.ts", "node_modules/rxjs/src/internal/operators/merge.ts", "node_modules/rxjs/src/internal/operators/mergeWith.ts", "node_modules/rxjs/src/internal/operators/repeat.ts", "node_modules/rxjs/src/internal/operators/sample.ts", "node_modules/rxjs/src/internal/operators/scan.ts", "node_modules/rxjs/src/internal/operators/share.ts", "node_modules/rxjs/src/internal/operators/shareReplay.ts", "node_modules/rxjs/src/internal/operators/skip.ts", "node_modules/rxjs/src/internal/operators/skipUntil.ts", "node_modules/rxjs/src/internal/operators/startWith.ts", "node_modules/rxjs/src/internal/operators/switchMap.ts", "node_modules/rxjs/src/internal/operators/takeUntil.ts", "node_modules/rxjs/src/internal/operators/takeWhile.ts", "node_modules/rxjs/src/internal/operators/tap.ts", "node_modules/rxjs/src/internal/operators/throttle.ts", "node_modules/rxjs/src/internal/operators/throttleTime.ts", "node_modules/rxjs/src/internal/operators/withLatestFrom.ts", "node_modules/rxjs/src/internal/operators/zip.ts", "node_modules/rxjs/src/internal/operators/zipWith.ts", "src/templates/assets/javascripts/browser/document/index.ts", "src/templates/assets/javascripts/browser/element/_/index.ts", "src/templates/assets/javascripts/browser/element/focus/index.ts", "src/templates/assets/javascripts/browser/element/hover/index.ts", "src/templates/assets/javascripts/browser/element/offset/_/index.ts", "src/templates/assets/javascripts/browser/element/offset/content/index.ts", "src/templates/assets/javascripts/utilities/h/index.ts", "src/templates/assets/javascripts/utilities/round/index.ts", "src/templates/assets/javascripts/browser/script/index.ts", "src/templates/assets/javascripts/browser/element/size/_/index.ts", "src/templates/assets/javascripts/browser/element/size/content/index.ts", "src/templates/assets/javascripts/browser/element/visibility/index.ts", "src/templates/assets/javascripts/browser/toggle/index.ts", "src/templates/assets/javascripts/browser/keyboard/index.ts", "src/templates/assets/javascripts/browser/location/_/index.ts", "src/templates/assets/javascripts/browser/location/hash/index.ts", "src/templates/assets/javascripts/browser/media/index.ts", "src/templates/assets/javascripts/browser/request/index.ts", "src/templates/assets/javascripts/browser/viewport/offset/index.ts", "src/templates/assets/javascripts/browser/viewport/size/index.ts", "src/templates/assets/javascripts/browser/viewport/_/index.ts", "src/templates/assets/javascripts/browser/viewport/at/index.ts", "src/templates/assets/javascripts/browser/worker/index.ts", "src/templates/assets/javascripts/_/index.ts", "src/templates/assets/javascripts/components/_/index.ts", "src/templates/assets/javascripts/components/announce/index.ts", "src/templates/assets/javascripts/components/consent/index.ts", "src/templates/assets/javascripts/templates/tooltip/index.tsx", "src/templates/assets/javascripts/templates/annotation/index.tsx", "src/templates/assets/javascripts/templates/clipboard/index.tsx", "src/templates/assets/javascripts/templates/search/index.tsx", "src/templates/assets/javascripts/templates/source/index.tsx", "src/templates/assets/javascripts/templates/tabbed/index.tsx", "src/templates/assets/javascripts/templates/table/index.tsx", "src/templates/assets/javascripts/templates/version/index.tsx", "src/templates/assets/javascripts/components/tooltip/index.ts", "src/templates/assets/javascripts/components/content/annotation/_/index.ts", "src/templates/assets/javascripts/components/content/annotation/list/index.ts", "src/templates/assets/javascripts/components/content/annotation/block/index.ts", "src/templates/assets/javascripts/components/content/code/_/index.ts", "src/templates/assets/javascripts/components/content/details/index.ts", "src/templates/assets/javascripts/components/content/mermaid/index.css", "src/templates/assets/javascripts/components/content/mermaid/index.ts", "src/templates/assets/javascripts/components/content/table/index.ts", "src/templates/assets/javascripts/components/content/tabs/index.ts", "src/templates/assets/javascripts/components/content/_/index.ts", "src/templates/assets/javascripts/components/dialog/index.ts", "src/templates/assets/javascripts/components/header/_/index.ts", "src/templates/assets/javascripts/components/header/title/index.ts", "src/templates/assets/javascripts/components/main/index.ts", "src/templates/assets/javascripts/components/palette/index.ts", "src/templates/assets/javascripts/components/progress/index.ts", "src/templates/assets/javascripts/integrations/clipboard/index.ts", "src/templates/assets/javascripts/integrations/sitemap/index.ts", "src/templates/assets/javascripts/integrations/instant/index.ts", "src/templates/assets/javascripts/integrations/search/highlighter/index.ts", "src/templates/assets/javascripts/integrations/search/worker/message/index.ts", "src/templates/assets/javascripts/integrations/search/worker/_/index.ts", "src/templates/assets/javascripts/integrations/version/index.ts", "src/templates/assets/javascripts/components/search/query/index.ts", "src/templates/assets/javascripts/components/search/result/index.ts", "src/templates/assets/javascripts/components/search/share/index.ts", "src/templates/assets/javascripts/components/search/suggest/index.ts", "src/templates/assets/javascripts/components/search/_/index.ts", "src/templates/assets/javascripts/components/search/highlight/index.ts", "src/templates/assets/javascripts/components/sidebar/index.ts", "src/templates/assets/javascripts/components/source/facts/github/index.ts", "src/templates/assets/javascripts/components/source/facts/gitlab/index.ts", "src/templates/assets/javascripts/components/source/facts/_/index.ts", "src/templates/assets/javascripts/components/source/_/index.ts", "src/templates/assets/javascripts/components/tabs/index.ts", "src/templates/assets/javascripts/components/toc/index.ts", "src/templates/assets/javascripts/components/top/index.ts", "src/templates/assets/javascripts/patches/ellipsis/index.ts", "src/templates/assets/javascripts/patches/indeterminate/index.ts", "src/templates/assets/javascripts/patches/scrollfix/index.ts", "src/templates/assets/javascripts/patches/scrolllock/index.ts", "src/templates/assets/javascripts/polyfills/index.ts"], + "sourcesContent": ["(function (global, factory) {\n typeof exports === 'object' && typeof module !== 'undefined' ? factory() :\n typeof define === 'function' && define.amd ? define(factory) :\n (factory());\n}(this, (function () { 'use strict';\n\n /**\n * Applies the :focus-visible polyfill at the given scope.\n * A scope in this case is either the top-level Document or a Shadow Root.\n *\n * @param {(Document|ShadowRoot)} scope\n * @see https://github.com/WICG/focus-visible\n */\n function applyFocusVisiblePolyfill(scope) {\n var hadKeyboardEvent = true;\n var hadFocusVisibleRecently = false;\n var hadFocusVisibleRecentlyTimeout = null;\n\n var inputTypesAllowlist = {\n text: true,\n search: true,\n url: true,\n tel: true,\n email: true,\n password: true,\n number: true,\n date: true,\n month: true,\n week: true,\n time: true,\n datetime: true,\n 'datetime-local': true\n };\n\n /**\n * Helper function for legacy browsers and iframes which sometimes focus\n * elements like document, body, and non-interactive SVG.\n * @param {Element} el\n */\n function isValidFocusTarget(el) {\n if (\n el &&\n el !== document &&\n el.nodeName !== 'HTML' &&\n el.nodeName !== 'BODY' &&\n 'classList' in el &&\n 'contains' in el.classList\n ) {\n return true;\n }\n return false;\n }\n\n /**\n * Computes whether the given element should automatically trigger the\n * `focus-visible` class being added, i.e. whether it should always match\n * `:focus-visible` when focused.\n * @param {Element} el\n * @return {boolean}\n */\n function focusTriggersKeyboardModality(el) {\n var type = el.type;\n var tagName = el.tagName;\n\n if (tagName === 'INPUT' && inputTypesAllowlist[type] && !el.readOnly) {\n return true;\n }\n\n if (tagName === 'TEXTAREA' && !el.readOnly) {\n return true;\n }\n\n if (el.isContentEditable) {\n return true;\n }\n\n return false;\n }\n\n /**\n * Add the `focus-visible` class to the given element if it was not added by\n * the author.\n * @param {Element} el\n */\n function addFocusVisibleClass(el) {\n if (el.classList.contains('focus-visible')) {\n return;\n }\n el.classList.add('focus-visible');\n el.setAttribute('data-focus-visible-added', '');\n }\n\n /**\n * Remove the `focus-visible` class from the given element if it was not\n * originally added by the author.\n * @param {Element} el\n */\n function removeFocusVisibleClass(el) {\n if (!el.hasAttribute('data-focus-visible-added')) {\n return;\n }\n el.classList.remove('focus-visible');\n el.removeAttribute('data-focus-visible-added');\n }\n\n /**\n * If the most recent user interaction was via the keyboard;\n * and the key press did not include a meta, alt/option, or control key;\n * then the modality is keyboard. Otherwise, the modality is not keyboard.\n * Apply `focus-visible` to any current active element and keep track\n * of our keyboard modality state with `hadKeyboardEvent`.\n * @param {KeyboardEvent} e\n */\n function onKeyDown(e) {\n if (e.metaKey || e.altKey || e.ctrlKey) {\n return;\n }\n\n if (isValidFocusTarget(scope.activeElement)) {\n addFocusVisibleClass(scope.activeElement);\n }\n\n hadKeyboardEvent = true;\n }\n\n /**\n * If at any point a user clicks with a pointing device, ensure that we change\n * the modality away from keyboard.\n * This avoids the situation where a user presses a key on an already focused\n * element, and then clicks on a different element, focusing it with a\n * pointing device, while we still think we're in keyboard modality.\n * @param {Event} e\n */\n function onPointerDown(e) {\n hadKeyboardEvent = false;\n }\n\n /**\n * On `focus`, add the `focus-visible` class to the target if:\n * - the target received focus as a result of keyboard navigation, or\n * - the event target is an element that will likely require interaction\n * via the keyboard (e.g. a text box)\n * @param {Event} e\n */\n function onFocus(e) {\n // Prevent IE from focusing the document or HTML element.\n if (!isValidFocusTarget(e.target)) {\n return;\n }\n\n if (hadKeyboardEvent || focusTriggersKeyboardModality(e.target)) {\n addFocusVisibleClass(e.target);\n }\n }\n\n /**\n * On `blur`, remove the `focus-visible` class from the target.\n * @param {Event} e\n */\n function onBlur(e) {\n if (!isValidFocusTarget(e.target)) {\n return;\n }\n\n if (\n e.target.classList.contains('focus-visible') ||\n e.target.hasAttribute('data-focus-visible-added')\n ) {\n // To detect a tab/window switch, we look for a blur event followed\n // rapidly by a visibility change.\n // If we don't see a visibility change within 100ms, it's probably a\n // regular focus change.\n hadFocusVisibleRecently = true;\n window.clearTimeout(hadFocusVisibleRecentlyTimeout);\n hadFocusVisibleRecentlyTimeout = window.setTimeout(function() {\n hadFocusVisibleRecently = false;\n }, 100);\n removeFocusVisibleClass(e.target);\n }\n }\n\n /**\n * If the user changes tabs, keep track of whether or not the previously\n * focused element had .focus-visible.\n * @param {Event} e\n */\n function onVisibilityChange(e) {\n if (document.visibilityState === 'hidden') {\n // If the tab becomes active again, the browser will handle calling focus\n // on the element (Safari actually calls it twice).\n // If this tab change caused a blur on an element with focus-visible,\n // re-apply the class when the user switches back to the tab.\n if (hadFocusVisibleRecently) {\n hadKeyboardEvent = true;\n }\n addInitialPointerMoveListeners();\n }\n }\n\n /**\n * Add a group of listeners to detect usage of any pointing devices.\n * These listeners will be added when the polyfill first loads, and anytime\n * the window is blurred, so that they are active when the window regains\n * focus.\n */\n function addInitialPointerMoveListeners() {\n document.addEventListener('mousemove', onInitialPointerMove);\n document.addEventListener('mousedown', onInitialPointerMove);\n document.addEventListener('mouseup', onInitialPointerMove);\n document.addEventListener('pointermove', onInitialPointerMove);\n document.addEventListener('pointerdown', onInitialPointerMove);\n document.addEventListener('pointerup', onInitialPointerMove);\n document.addEventListener('touchmove', onInitialPointerMove);\n document.addEventListener('touchstart', onInitialPointerMove);\n document.addEventListener('touchend', onInitialPointerMove);\n }\n\n function removeInitialPointerMoveListeners() {\n document.removeEventListener('mousemove', onInitialPointerMove);\n document.removeEventListener('mousedown', onInitialPointerMove);\n document.removeEventListener('mouseup', onInitialPointerMove);\n document.removeEventListener('pointermove', onInitialPointerMove);\n document.removeEventListener('pointerdown', onInitialPointerMove);\n document.removeEventListener('pointerup', onInitialPointerMove);\n document.removeEventListener('touchmove', onInitialPointerMove);\n document.removeEventListener('touchstart', onInitialPointerMove);\n document.removeEventListener('touchend', onInitialPointerMove);\n }\n\n /**\n * When the polfyill first loads, assume the user is in keyboard modality.\n * If any event is received from a pointing device (e.g. mouse, pointer,\n * touch), turn off keyboard modality.\n * This accounts for situations where focus enters the page from the URL bar.\n * @param {Event} e\n */\n function onInitialPointerMove(e) {\n // Work around a Safari quirk that fires a mousemove on whenever the\n // window blurs, even if you're tabbing out of the page. \u00AF\\_(\u30C4)_/\u00AF\n if (e.target.nodeName && e.target.nodeName.toLowerCase() === 'html') {\n return;\n }\n\n hadKeyboardEvent = false;\n removeInitialPointerMoveListeners();\n }\n\n // For some kinds of state, we are interested in changes at the global scope\n // only. For example, global pointer input, global key presses and global\n // visibility change should affect the state at every scope:\n document.addEventListener('keydown', onKeyDown, true);\n document.addEventListener('mousedown', onPointerDown, true);\n document.addEventListener('pointerdown', onPointerDown, true);\n document.addEventListener('touchstart', onPointerDown, true);\n document.addEventListener('visibilitychange', onVisibilityChange, true);\n\n addInitialPointerMoveListeners();\n\n // For focus and blur, we specifically care about state changes in the local\n // scope. This is because focus / blur events that originate from within a\n // shadow root are not re-dispatched from the host element if it was already\n // the active element in its own scope:\n scope.addEventListener('focus', onFocus, true);\n scope.addEventListener('blur', onBlur, true);\n\n // We detect that a node is a ShadowRoot by ensuring that it is a\n // DocumentFragment and also has a host property. This check covers native\n // implementation and polyfill implementation transparently. If we only cared\n // about the native implementation, we could just check if the scope was\n // an instance of a ShadowRoot.\n if (scope.nodeType === Node.DOCUMENT_FRAGMENT_NODE && scope.host) {\n // Since a ShadowRoot is a special kind of DocumentFragment, it does not\n // have a root element to add a class to. So, we add this attribute to the\n // host element instead:\n scope.host.setAttribute('data-js-focus-visible', '');\n } else if (scope.nodeType === Node.DOCUMENT_NODE) {\n document.documentElement.classList.add('js-focus-visible');\n document.documentElement.setAttribute('data-js-focus-visible', '');\n }\n }\n\n // It is important to wrap all references to global window and document in\n // these checks to support server-side rendering use cases\n // @see https://github.com/WICG/focus-visible/issues/199\n if (typeof window !== 'undefined' && typeof document !== 'undefined') {\n // Make the polyfill helper globally available. This can be used as a signal\n // to interested libraries that wish to coordinate with the polyfill for e.g.,\n // applying the polyfill to a shadow root:\n window.applyFocusVisiblePolyfill = applyFocusVisiblePolyfill;\n\n // Notify interested libraries of the polyfill's presence, in case the\n // polyfill was loaded lazily:\n var event;\n\n try {\n event = new CustomEvent('focus-visible-polyfill-ready');\n } catch (error) {\n // IE11 does not support using CustomEvent as a constructor directly:\n event = document.createEvent('CustomEvent');\n event.initCustomEvent('focus-visible-polyfill-ready', false, false, {});\n }\n\n window.dispatchEvent(event);\n }\n\n if (typeof document !== 'undefined') {\n // Apply the polyfill to the global document, so that no JavaScript\n // coordination is required to use the polyfill in the top-level document:\n applyFocusVisiblePolyfill(document);\n }\n\n})));\n", "/*!\n * clipboard.js v2.0.11\n * https://clipboardjs.com/\n *\n * Licensed MIT \u00A9 Zeno Rocha\n */\n(function webpackUniversalModuleDefinition(root, factory) {\n\tif(typeof exports === 'object' && typeof module === 'object')\n\t\tmodule.exports = factory();\n\telse if(typeof define === 'function' && define.amd)\n\t\tdefine([], factory);\n\telse if(typeof exports === 'object')\n\t\texports[\"ClipboardJS\"] = factory();\n\telse\n\t\troot[\"ClipboardJS\"] = factory();\n})(this, function() {\nreturn /******/ (function() { // webpackBootstrap\n/******/ \tvar __webpack_modules__ = ({\n\n/***/ 686:\n/***/ (function(__unused_webpack_module, __webpack_exports__, __webpack_require__) {\n\n\"use strict\";\n\n// EXPORTS\n__webpack_require__.d(__webpack_exports__, {\n \"default\": function() { return /* binding */ clipboard; }\n});\n\n// EXTERNAL MODULE: ./node_modules/tiny-emitter/index.js\nvar tiny_emitter = __webpack_require__(279);\nvar tiny_emitter_default = /*#__PURE__*/__webpack_require__.n(tiny_emitter);\n// EXTERNAL MODULE: ./node_modules/good-listener/src/listen.js\nvar listen = __webpack_require__(370);\nvar listen_default = /*#__PURE__*/__webpack_require__.n(listen);\n// EXTERNAL MODULE: ./node_modules/select/src/select.js\nvar src_select = __webpack_require__(817);\nvar select_default = /*#__PURE__*/__webpack_require__.n(src_select);\n;// CONCATENATED MODULE: ./src/common/command.js\n/**\n * Executes a given operation type.\n * @param {String} type\n * @return {Boolean}\n */\nfunction command(type) {\n try {\n return document.execCommand(type);\n } catch (err) {\n return false;\n }\n}\n;// CONCATENATED MODULE: ./src/actions/cut.js\n\n\n/**\n * Cut action wrapper.\n * @param {String|HTMLElement} target\n * @return {String}\n */\n\nvar ClipboardActionCut = function ClipboardActionCut(target) {\n var selectedText = select_default()(target);\n command('cut');\n return selectedText;\n};\n\n/* harmony default export */ var actions_cut = (ClipboardActionCut);\n;// CONCATENATED MODULE: ./src/common/create-fake-element.js\n/**\n * Creates a fake textarea element with a value.\n * @param {String} value\n * @return {HTMLElement}\n */\nfunction createFakeElement(value) {\n var isRTL = document.documentElement.getAttribute('dir') === 'rtl';\n var fakeElement = document.createElement('textarea'); // Prevent zooming on iOS\n\n fakeElement.style.fontSize = '12pt'; // Reset box model\n\n fakeElement.style.border = '0';\n fakeElement.style.padding = '0';\n fakeElement.style.margin = '0'; // Move element out of screen horizontally\n\n fakeElement.style.position = 'absolute';\n fakeElement.style[isRTL ? 'right' : 'left'] = '-9999px'; // Move element to the same position vertically\n\n var yPosition = window.pageYOffset || document.documentElement.scrollTop;\n fakeElement.style.top = \"\".concat(yPosition, \"px\");\n fakeElement.setAttribute('readonly', '');\n fakeElement.value = value;\n return fakeElement;\n}\n;// CONCATENATED MODULE: ./src/actions/copy.js\n\n\n\n/**\n * Create fake copy action wrapper using a fake element.\n * @param {String} target\n * @param {Object} options\n * @return {String}\n */\n\nvar fakeCopyAction = function fakeCopyAction(value, options) {\n var fakeElement = createFakeElement(value);\n options.container.appendChild(fakeElement);\n var selectedText = select_default()(fakeElement);\n command('copy');\n fakeElement.remove();\n return selectedText;\n};\n/**\n * Copy action wrapper.\n * @param {String|HTMLElement} target\n * @param {Object} options\n * @return {String}\n */\n\n\nvar ClipboardActionCopy = function ClipboardActionCopy(target) {\n var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {\n container: document.body\n };\n var selectedText = '';\n\n if (typeof target === 'string') {\n selectedText = fakeCopyAction(target, options);\n } else if (target instanceof HTMLInputElement && !['text', 'search', 'url', 'tel', 'password'].includes(target === null || target === void 0 ? void 0 : target.type)) {\n // If input type doesn't support `setSelectionRange`. Simulate it. https://developer.mozilla.org/en-US/docs/Web/API/HTMLInputElement/setSelectionRange\n selectedText = fakeCopyAction(target.value, options);\n } else {\n selectedText = select_default()(target);\n command('copy');\n }\n\n return selectedText;\n};\n\n/* harmony default export */ var actions_copy = (ClipboardActionCopy);\n;// CONCATENATED MODULE: ./src/actions/default.js\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\n\n\n/**\n * Inner function which performs selection from either `text` or `target`\n * properties and then executes copy or cut operations.\n * @param {Object} options\n */\n\nvar ClipboardActionDefault = function ClipboardActionDefault() {\n var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {};\n // Defines base properties passed from constructor.\n var _options$action = options.action,\n action = _options$action === void 0 ? 'copy' : _options$action,\n container = options.container,\n target = options.target,\n text = options.text; // Sets the `action` to be performed which can be either 'copy' or 'cut'.\n\n if (action !== 'copy' && action !== 'cut') {\n throw new Error('Invalid \"action\" value, use either \"copy\" or \"cut\"');\n } // Sets the `target` property using an element that will be have its content copied.\n\n\n if (target !== undefined) {\n if (target && _typeof(target) === 'object' && target.nodeType === 1) {\n if (action === 'copy' && target.hasAttribute('disabled')) {\n throw new Error('Invalid \"target\" attribute. Please use \"readonly\" instead of \"disabled\" attribute');\n }\n\n if (action === 'cut' && (target.hasAttribute('readonly') || target.hasAttribute('disabled'))) {\n throw new Error('Invalid \"target\" attribute. You can\\'t cut text from elements with \"readonly\" or \"disabled\" attributes');\n }\n } else {\n throw new Error('Invalid \"target\" value, use a valid Element');\n }\n } // Define selection strategy based on `text` property.\n\n\n if (text) {\n return actions_copy(text, {\n container: container\n });\n } // Defines which selection strategy based on `target` property.\n\n\n if (target) {\n return action === 'cut' ? actions_cut(target) : actions_copy(target, {\n container: container\n });\n }\n};\n\n/* harmony default export */ var actions_default = (ClipboardActionDefault);\n;// CONCATENATED MODULE: ./src/clipboard.js\nfunction clipboard_typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { clipboard_typeof = function _typeof(obj) { return typeof obj; }; } else { clipboard_typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return clipboard_typeof(obj); }\n\nfunction _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError(\"Cannot call a class as a function\"); } }\n\nfunction _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if (\"value\" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } }\n\nfunction _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); return Constructor; }\n\nfunction _inherits(subClass, superClass) { if (typeof superClass !== \"function\" && superClass !== null) { throw new TypeError(\"Super expression must either be null or a function\"); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, writable: true, configurable: true } }); if (superClass) _setPrototypeOf(subClass, superClass); }\n\nfunction _setPrototypeOf(o, p) { _setPrototypeOf = Object.setPrototypeOf || function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf(o, p); }\n\nfunction _createSuper(Derived) { var hasNativeReflectConstruct = _isNativeReflectConstruct(); return function _createSuperInternal() { var Super = _getPrototypeOf(Derived), result; if (hasNativeReflectConstruct) { var NewTarget = _getPrototypeOf(this).constructor; result = Reflect.construct(Super, arguments, NewTarget); } else { result = Super.apply(this, arguments); } return _possibleConstructorReturn(this, result); }; }\n\nfunction _possibleConstructorReturn(self, call) { if (call && (clipboard_typeof(call) === \"object\" || typeof call === \"function\")) { return call; } return _assertThisInitialized(self); }\n\nfunction _assertThisInitialized(self) { if (self === void 0) { throw new ReferenceError(\"this hasn't been initialised - super() hasn't been called\"); } return self; }\n\nfunction _isNativeReflectConstruct() { if (typeof Reflect === \"undefined\" || !Reflect.construct) return false; if (Reflect.construct.sham) return false; if (typeof Proxy === \"function\") return true; try { Date.prototype.toString.call(Reflect.construct(Date, [], function () {})); return true; } catch (e) { return false; } }\n\nfunction _getPrototypeOf(o) { _getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf : function _getPrototypeOf(o) { return o.__proto__ || Object.getPrototypeOf(o); }; return _getPrototypeOf(o); }\n\n\n\n\n\n\n/**\n * Helper function to retrieve attribute value.\n * @param {String} suffix\n * @param {Element} element\n */\n\nfunction getAttributeValue(suffix, element) {\n var attribute = \"data-clipboard-\".concat(suffix);\n\n if (!element.hasAttribute(attribute)) {\n return;\n }\n\n return element.getAttribute(attribute);\n}\n/**\n * Base class which takes one or more elements, adds event listeners to them,\n * and instantiates a new `ClipboardAction` on each click.\n */\n\n\nvar Clipboard = /*#__PURE__*/function (_Emitter) {\n _inherits(Clipboard, _Emitter);\n\n var _super = _createSuper(Clipboard);\n\n /**\n * @param {String|HTMLElement|HTMLCollection|NodeList} trigger\n * @param {Object} options\n */\n function Clipboard(trigger, options) {\n var _this;\n\n _classCallCheck(this, Clipboard);\n\n _this = _super.call(this);\n\n _this.resolveOptions(options);\n\n _this.listenClick(trigger);\n\n return _this;\n }\n /**\n * Defines if attributes would be resolved using internal setter functions\n * or custom functions that were passed in the constructor.\n * @param {Object} options\n */\n\n\n _createClass(Clipboard, [{\n key: \"resolveOptions\",\n value: function resolveOptions() {\n var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {};\n this.action = typeof options.action === 'function' ? options.action : this.defaultAction;\n this.target = typeof options.target === 'function' ? options.target : this.defaultTarget;\n this.text = typeof options.text === 'function' ? options.text : this.defaultText;\n this.container = clipboard_typeof(options.container) === 'object' ? options.container : document.body;\n }\n /**\n * Adds a click event listener to the passed trigger.\n * @param {String|HTMLElement|HTMLCollection|NodeList} trigger\n */\n\n }, {\n key: \"listenClick\",\n value: function listenClick(trigger) {\n var _this2 = this;\n\n this.listener = listen_default()(trigger, 'click', function (e) {\n return _this2.onClick(e);\n });\n }\n /**\n * Defines a new `ClipboardAction` on each click event.\n * @param {Event} e\n */\n\n }, {\n key: \"onClick\",\n value: function onClick(e) {\n var trigger = e.delegateTarget || e.currentTarget;\n var action = this.action(trigger) || 'copy';\n var text = actions_default({\n action: action,\n container: this.container,\n target: this.target(trigger),\n text: this.text(trigger)\n }); // Fires an event based on the copy operation result.\n\n this.emit(text ? 'success' : 'error', {\n action: action,\n text: text,\n trigger: trigger,\n clearSelection: function clearSelection() {\n if (trigger) {\n trigger.focus();\n }\n\n window.getSelection().removeAllRanges();\n }\n });\n }\n /**\n * Default `action` lookup function.\n * @param {Element} trigger\n */\n\n }, {\n key: \"defaultAction\",\n value: function defaultAction(trigger) {\n return getAttributeValue('action', trigger);\n }\n /**\n * Default `target` lookup function.\n * @param {Element} trigger\n */\n\n }, {\n key: \"defaultTarget\",\n value: function defaultTarget(trigger) {\n var selector = getAttributeValue('target', trigger);\n\n if (selector) {\n return document.querySelector(selector);\n }\n }\n /**\n * Allow fire programmatically a copy action\n * @param {String|HTMLElement} target\n * @param {Object} options\n * @returns Text copied.\n */\n\n }, {\n key: \"defaultText\",\n\n /**\n * Default `text` lookup function.\n * @param {Element} trigger\n */\n value: function defaultText(trigger) {\n return getAttributeValue('text', trigger);\n }\n /**\n * Destroy lifecycle.\n */\n\n }, {\n key: \"destroy\",\n value: function destroy() {\n this.listener.destroy();\n }\n }], [{\n key: \"copy\",\n value: function copy(target) {\n var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {\n container: document.body\n };\n return actions_copy(target, options);\n }\n /**\n * Allow fire programmatically a cut action\n * @param {String|HTMLElement} target\n * @returns Text cutted.\n */\n\n }, {\n key: \"cut\",\n value: function cut(target) {\n return actions_cut(target);\n }\n /**\n * Returns the support of the given action, or all actions if no action is\n * given.\n * @param {String} [action]\n */\n\n }, {\n key: \"isSupported\",\n value: function isSupported() {\n var action = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : ['copy', 'cut'];\n var actions = typeof action === 'string' ? [action] : action;\n var support = !!document.queryCommandSupported;\n actions.forEach(function (action) {\n support = support && !!document.queryCommandSupported(action);\n });\n return support;\n }\n }]);\n\n return Clipboard;\n}((tiny_emitter_default()));\n\n/* harmony default export */ var clipboard = (Clipboard);\n\n/***/ }),\n\n/***/ 828:\n/***/ (function(module) {\n\nvar DOCUMENT_NODE_TYPE = 9;\n\n/**\n * A polyfill for Element.matches()\n */\nif (typeof Element !== 'undefined' && !Element.prototype.matches) {\n var proto = Element.prototype;\n\n proto.matches = proto.matchesSelector ||\n proto.mozMatchesSelector ||\n proto.msMatchesSelector ||\n proto.oMatchesSelector ||\n proto.webkitMatchesSelector;\n}\n\n/**\n * Finds the closest parent that matches a selector.\n *\n * @param {Element} element\n * @param {String} selector\n * @return {Function}\n */\nfunction closest (element, selector) {\n while (element && element.nodeType !== DOCUMENT_NODE_TYPE) {\n if (typeof element.matches === 'function' &&\n element.matches(selector)) {\n return element;\n }\n element = element.parentNode;\n }\n}\n\nmodule.exports = closest;\n\n\n/***/ }),\n\n/***/ 438:\n/***/ (function(module, __unused_webpack_exports, __webpack_require__) {\n\nvar closest = __webpack_require__(828);\n\n/**\n * Delegates event to a selector.\n *\n * @param {Element} element\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @param {Boolean} useCapture\n * @return {Object}\n */\nfunction _delegate(element, selector, type, callback, useCapture) {\n var listenerFn = listener.apply(this, arguments);\n\n element.addEventListener(type, listenerFn, useCapture);\n\n return {\n destroy: function() {\n element.removeEventListener(type, listenerFn, useCapture);\n }\n }\n}\n\n/**\n * Delegates event to a selector.\n *\n * @param {Element|String|Array} [elements]\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @param {Boolean} useCapture\n * @return {Object}\n */\nfunction delegate(elements, selector, type, callback, useCapture) {\n // Handle the regular Element usage\n if (typeof elements.addEventListener === 'function') {\n return _delegate.apply(null, arguments);\n }\n\n // Handle Element-less usage, it defaults to global delegation\n if (typeof type === 'function') {\n // Use `document` as the first parameter, then apply arguments\n // This is a short way to .unshift `arguments` without running into deoptimizations\n return _delegate.bind(null, document).apply(null, arguments);\n }\n\n // Handle Selector-based usage\n if (typeof elements === 'string') {\n elements = document.querySelectorAll(elements);\n }\n\n // Handle Array-like based usage\n return Array.prototype.map.call(elements, function (element) {\n return _delegate(element, selector, type, callback, useCapture);\n });\n}\n\n/**\n * Finds closest match and invokes callback.\n *\n * @param {Element} element\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @return {Function}\n */\nfunction listener(element, selector, type, callback) {\n return function(e) {\n e.delegateTarget = closest(e.target, selector);\n\n if (e.delegateTarget) {\n callback.call(element, e);\n }\n }\n}\n\nmodule.exports = delegate;\n\n\n/***/ }),\n\n/***/ 879:\n/***/ (function(__unused_webpack_module, exports) {\n\n/**\n * Check if argument is a HTML element.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.node = function(value) {\n return value !== undefined\n && value instanceof HTMLElement\n && value.nodeType === 1;\n};\n\n/**\n * Check if argument is a list of HTML elements.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.nodeList = function(value) {\n var type = Object.prototype.toString.call(value);\n\n return value !== undefined\n && (type === '[object NodeList]' || type === '[object HTMLCollection]')\n && ('length' in value)\n && (value.length === 0 || exports.node(value[0]));\n};\n\n/**\n * Check if argument is a string.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.string = function(value) {\n return typeof value === 'string'\n || value instanceof String;\n};\n\n/**\n * Check if argument is a function.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.fn = function(value) {\n var type = Object.prototype.toString.call(value);\n\n return type === '[object Function]';\n};\n\n\n/***/ }),\n\n/***/ 370:\n/***/ (function(module, __unused_webpack_exports, __webpack_require__) {\n\nvar is = __webpack_require__(879);\nvar delegate = __webpack_require__(438);\n\n/**\n * Validates all params and calls the right\n * listener function based on its target type.\n *\n * @param {String|HTMLElement|HTMLCollection|NodeList} target\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listen(target, type, callback) {\n if (!target && !type && !callback) {\n throw new Error('Missing required arguments');\n }\n\n if (!is.string(type)) {\n throw new TypeError('Second argument must be a String');\n }\n\n if (!is.fn(callback)) {\n throw new TypeError('Third argument must be a Function');\n }\n\n if (is.node(target)) {\n return listenNode(target, type, callback);\n }\n else if (is.nodeList(target)) {\n return listenNodeList(target, type, callback);\n }\n else if (is.string(target)) {\n return listenSelector(target, type, callback);\n }\n else {\n throw new TypeError('First argument must be a String, HTMLElement, HTMLCollection, or NodeList');\n }\n}\n\n/**\n * Adds an event listener to a HTML element\n * and returns a remove listener function.\n *\n * @param {HTMLElement} node\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenNode(node, type, callback) {\n node.addEventListener(type, callback);\n\n return {\n destroy: function() {\n node.removeEventListener(type, callback);\n }\n }\n}\n\n/**\n * Add an event listener to a list of HTML elements\n * and returns a remove listener function.\n *\n * @param {NodeList|HTMLCollection} nodeList\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenNodeList(nodeList, type, callback) {\n Array.prototype.forEach.call(nodeList, function(node) {\n node.addEventListener(type, callback);\n });\n\n return {\n destroy: function() {\n Array.prototype.forEach.call(nodeList, function(node) {\n node.removeEventListener(type, callback);\n });\n }\n }\n}\n\n/**\n * Add an event listener to a selector\n * and returns a remove listener function.\n *\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenSelector(selector, type, callback) {\n return delegate(document.body, selector, type, callback);\n}\n\nmodule.exports = listen;\n\n\n/***/ }),\n\n/***/ 817:\n/***/ (function(module) {\n\nfunction select(element) {\n var selectedText;\n\n if (element.nodeName === 'SELECT') {\n element.focus();\n\n selectedText = element.value;\n }\n else if (element.nodeName === 'INPUT' || element.nodeName === 'TEXTAREA') {\n var isReadOnly = element.hasAttribute('readonly');\n\n if (!isReadOnly) {\n element.setAttribute('readonly', '');\n }\n\n element.select();\n element.setSelectionRange(0, element.value.length);\n\n if (!isReadOnly) {\n element.removeAttribute('readonly');\n }\n\n selectedText = element.value;\n }\n else {\n if (element.hasAttribute('contenteditable')) {\n element.focus();\n }\n\n var selection = window.getSelection();\n var range = document.createRange();\n\n range.selectNodeContents(element);\n selection.removeAllRanges();\n selection.addRange(range);\n\n selectedText = selection.toString();\n }\n\n return selectedText;\n}\n\nmodule.exports = select;\n\n\n/***/ }),\n\n/***/ 279:\n/***/ (function(module) {\n\nfunction E () {\n // Keep this empty so it's easier to inherit from\n // (via https://github.com/lipsmack from https://github.com/scottcorgan/tiny-emitter/issues/3)\n}\n\nE.prototype = {\n on: function (name, callback, ctx) {\n var e = this.e || (this.e = {});\n\n (e[name] || (e[name] = [])).push({\n fn: callback,\n ctx: ctx\n });\n\n return this;\n },\n\n once: function (name, callback, ctx) {\n var self = this;\n function listener () {\n self.off(name, listener);\n callback.apply(ctx, arguments);\n };\n\n listener._ = callback\n return this.on(name, listener, ctx);\n },\n\n emit: function (name) {\n var data = [].slice.call(arguments, 1);\n var evtArr = ((this.e || (this.e = {}))[name] || []).slice();\n var i = 0;\n var len = evtArr.length;\n\n for (i; i < len; i++) {\n evtArr[i].fn.apply(evtArr[i].ctx, data);\n }\n\n return this;\n },\n\n off: function (name, callback) {\n var e = this.e || (this.e = {});\n var evts = e[name];\n var liveEvents = [];\n\n if (evts && callback) {\n for (var i = 0, len = evts.length; i < len; i++) {\n if (evts[i].fn !== callback && evts[i].fn._ !== callback)\n liveEvents.push(evts[i]);\n }\n }\n\n // Remove event from queue to prevent memory leak\n // Suggested by https://github.com/lazd\n // Ref: https://github.com/scottcorgan/tiny-emitter/commit/c6ebfaa9bc973b33d110a84a307742b7cf94c953#commitcomment-5024910\n\n (liveEvents.length)\n ? e[name] = liveEvents\n : delete e[name];\n\n return this;\n }\n};\n\nmodule.exports = E;\nmodule.exports.TinyEmitter = E;\n\n\n/***/ })\n\n/******/ \t});\n/************************************************************************/\n/******/ \t// The module cache\n/******/ \tvar __webpack_module_cache__ = {};\n/******/ \t\n/******/ \t// The require function\n/******/ \tfunction __webpack_require__(moduleId) {\n/******/ \t\t// Check if module is in cache\n/******/ \t\tif(__webpack_module_cache__[moduleId]) {\n/******/ \t\t\treturn __webpack_module_cache__[moduleId].exports;\n/******/ \t\t}\n/******/ \t\t// Create a new module (and put it into the cache)\n/******/ \t\tvar module = __webpack_module_cache__[moduleId] = {\n/******/ \t\t\t// no module.id needed\n/******/ \t\t\t// no module.loaded needed\n/******/ \t\t\texports: {}\n/******/ \t\t};\n/******/ \t\n/******/ \t\t// Execute the module function\n/******/ \t\t__webpack_modules__[moduleId](module, module.exports, __webpack_require__);\n/******/ \t\n/******/ \t\t// Return the exports of the module\n/******/ \t\treturn module.exports;\n/******/ \t}\n/******/ \t\n/************************************************************************/\n/******/ \t/* webpack/runtime/compat get default export */\n/******/ \t!function() {\n/******/ \t\t// getDefaultExport function for compatibility with non-harmony modules\n/******/ \t\t__webpack_require__.n = function(module) {\n/******/ \t\t\tvar getter = module && module.__esModule ?\n/******/ \t\t\t\tfunction() { return module['default']; } :\n/******/ \t\t\t\tfunction() { return module; };\n/******/ \t\t\t__webpack_require__.d(getter, { a: getter });\n/******/ \t\t\treturn getter;\n/******/ \t\t};\n/******/ \t}();\n/******/ \t\n/******/ \t/* webpack/runtime/define property getters */\n/******/ \t!function() {\n/******/ \t\t// define getter functions for harmony exports\n/******/ \t\t__webpack_require__.d = function(exports, definition) {\n/******/ \t\t\tfor(var key in definition) {\n/******/ \t\t\t\tif(__webpack_require__.o(definition, key) && !__webpack_require__.o(exports, key)) {\n/******/ \t\t\t\t\tObject.defineProperty(exports, key, { enumerable: true, get: definition[key] });\n/******/ \t\t\t\t}\n/******/ \t\t\t}\n/******/ \t\t};\n/******/ \t}();\n/******/ \t\n/******/ \t/* webpack/runtime/hasOwnProperty shorthand */\n/******/ \t!function() {\n/******/ \t\t__webpack_require__.o = function(obj, prop) { return Object.prototype.hasOwnProperty.call(obj, prop); }\n/******/ \t}();\n/******/ \t\n/************************************************************************/\n/******/ \t// module exports must be returned from runtime so entry inlining is disabled\n/******/ \t// startup\n/******/ \t// Load entry module and return exports\n/******/ \treturn __webpack_require__(686);\n/******/ })()\n.default;\n});", "/*!\n * escape-html\n * Copyright(c) 2012-2013 TJ Holowaychuk\n * Copyright(c) 2015 Andreas Lubbe\n * Copyright(c) 2015 Tiancheng \"Timothy\" Gu\n * MIT Licensed\n */\n\n'use strict';\n\n/**\n * Module variables.\n * @private\n */\n\nvar matchHtmlRegExp = /[\"'&<>]/;\n\n/**\n * Module exports.\n * @public\n */\n\nmodule.exports = escapeHtml;\n\n/**\n * Escape special characters in the given string of html.\n *\n * @param {string} string The string to escape for inserting into HTML\n * @return {string}\n * @public\n */\n\nfunction escapeHtml(string) {\n var str = '' + string;\n var match = matchHtmlRegExp.exec(str);\n\n if (!match) {\n return str;\n }\n\n var escape;\n var html = '';\n var index = 0;\n var lastIndex = 0;\n\n for (index = match.index; index < str.length; index++) {\n switch (str.charCodeAt(index)) {\n case 34: // \"\n escape = '"';\n break;\n case 38: // &\n escape = '&';\n break;\n case 39: // '\n escape = ''';\n break;\n case 60: // <\n escape = '<';\n break;\n case 62: // >\n escape = '>';\n break;\n default:\n continue;\n }\n\n if (lastIndex !== index) {\n html += str.substring(lastIndex, index);\n }\n\n lastIndex = index + 1;\n html += escape;\n }\n\n return lastIndex !== index\n ? html + str.substring(lastIndex, index)\n : html;\n}\n", "/*\n * Copyright (c) 2016-2023 Martin Donath \n *\n * Permission is hereby granted, free of charge, to any person obtaining a copy\n * of this software and associated documentation files (the \"Software\"), to\n * deal in the Software without restriction, including without limitation the\n * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or\n * sell copies of the Software, and to permit persons to whom the Software is\n * furnished to do so, subject to the following conditions:\n *\n * The above copyright notice and this permission notice shall be included in\n * all copies or substantial portions of the Software.\n *\n * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE\n * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS\n * IN THE SOFTWARE.\n */\n\nimport \"focus-visible\"\n\nimport {\n EMPTY,\n NEVER,\n Observable,\n Subject,\n defer,\n delay,\n filter,\n map,\n merge,\n mergeWith,\n shareReplay,\n switchMap\n} from \"rxjs\"\n\nimport { configuration, feature } from \"./_\"\nimport {\n at,\n getActiveElement,\n getOptionalElement,\n requestJSON,\n setLocation,\n setToggle,\n watchDocument,\n watchKeyboard,\n watchLocation,\n watchLocationTarget,\n watchMedia,\n watchPrint,\n watchScript,\n watchViewport\n} from \"./browser\"\nimport {\n getComponentElement,\n getComponentElements,\n mountAnnounce,\n mountBackToTop,\n mountConsent,\n mountContent,\n mountDialog,\n mountHeader,\n mountHeaderTitle,\n mountPalette,\n mountProgress,\n mountSearch,\n mountSearchHiglight,\n mountSidebar,\n mountSource,\n mountTableOfContents,\n mountTabs,\n watchHeader,\n watchMain\n} from \"./components\"\nimport {\n SearchIndex,\n setupClipboardJS,\n setupInstantNavigation,\n setupVersionSelector\n} from \"./integrations\"\nimport {\n patchEllipsis,\n patchIndeterminate,\n patchScrollfix,\n patchScrolllock\n} from \"./patches\"\nimport \"./polyfills\"\n\n/* ----------------------------------------------------------------------------\n * Functions - @todo refactor\n * ------------------------------------------------------------------------- */\n\n/**\n * Fetch search index\n *\n * @returns Search index observable\n */\nfunction fetchSearchIndex(): Observable {\n if (location.protocol === \"file:\") {\n return watchScript(\n `${new URL(\"search/search_index.js\", config.base)}`\n )\n .pipe(\n // @ts-ignore - @todo fix typings\n map(() => __index),\n shareReplay(1)\n )\n } else {\n return requestJSON(\n new URL(\"search/search_index.json\", config.base)\n )\n }\n}\n\n/* ----------------------------------------------------------------------------\n * Application\n * ------------------------------------------------------------------------- */\n\n/* Yay, JavaScript is available */\ndocument.documentElement.classList.remove(\"no-js\")\ndocument.documentElement.classList.add(\"js\")\n\n/* Set up navigation observables and subjects */\nconst document$ = watchDocument()\nconst location$ = watchLocation()\nconst target$ = watchLocationTarget(location$)\nconst keyboard$ = watchKeyboard()\n\n/* Set up media observables */\nconst viewport$ = watchViewport()\nconst tablet$ = watchMedia(\"(min-width: 960px)\")\nconst screen$ = watchMedia(\"(min-width: 1220px)\")\nconst print$ = watchPrint()\n\n/* Retrieve search index, if search is enabled */\nconst config = configuration()\nconst index$ = document.forms.namedItem(\"search\")\n ? fetchSearchIndex()\n : NEVER\n\n/* Set up Clipboard.js integration */\nconst alert$ = new Subject()\nsetupClipboardJS({ alert$ })\n\n/* Set up progress indicator */\nconst progress$ = new Subject()\n\n/* Set up instant navigation, if enabled */\nif (feature(\"navigation.instant\"))\n setupInstantNavigation({ location$, viewport$, progress$ })\n .subscribe(document$)\n\n/* Set up version selector */\nif (config.version?.provider === \"mike\")\n setupVersionSelector({ document$ })\n\n/* Always close drawer and search on navigation */\nmerge(location$, target$)\n .pipe(\n delay(125)\n )\n .subscribe(() => {\n setToggle(\"drawer\", false)\n setToggle(\"search\", false)\n })\n\n/* Set up global keyboard handlers */\nkeyboard$\n .pipe(\n filter(({ mode }) => mode === \"global\")\n )\n .subscribe(key => {\n switch (key.type) {\n\n /* Go to previous page */\n case \"p\":\n case \",\":\n const prev = getOptionalElement(\"link[rel=prev]\")\n if (typeof prev !== \"undefined\")\n setLocation(prev)\n break\n\n /* Go to next page */\n case \"n\":\n case \".\":\n const next = getOptionalElement(\"link[rel=next]\")\n if (typeof next !== \"undefined\")\n setLocation(next)\n break\n\n /* Expand navigation, see https://bit.ly/3ZjG5io */\n case \"Enter\":\n const active = getActiveElement()\n if (active instanceof HTMLLabelElement)\n active.click()\n }\n })\n\n/* Set up patches */\npatchEllipsis({ document$ })\npatchIndeterminate({ document$, tablet$ })\npatchScrollfix({ document$ })\npatchScrolllock({ viewport$, tablet$ })\n\n/* Set up header and main area observable */\nconst header$ = watchHeader(getComponentElement(\"header\"), { viewport$ })\nconst main$ = document$\n .pipe(\n map(() => getComponentElement(\"main\")),\n switchMap(el => watchMain(el, { viewport$, header$ })),\n shareReplay(1)\n )\n\n/* Set up control component observables */\nconst control$ = merge(\n\n /* Consent */\n ...getComponentElements(\"consent\")\n .map(el => mountConsent(el, { target$ })),\n\n /* Dialog */\n ...getComponentElements(\"dialog\")\n .map(el => mountDialog(el, { alert$ })),\n\n /* Header */\n ...getComponentElements(\"header\")\n .map(el => mountHeader(el, { viewport$, header$, main$ })),\n\n /* Color palette */\n ...getComponentElements(\"palette\")\n .map(el => mountPalette(el)),\n\n /* Progress bar */\n ...getComponentElements(\"progress\")\n .map(el => mountProgress(el, { progress$ })),\n\n /* Search */\n ...getComponentElements(\"search\")\n .map(el => mountSearch(el, { index$, keyboard$ })),\n\n /* Repository information */\n ...getComponentElements(\"source\")\n .map(el => mountSource(el))\n)\n\n/* Set up content component observables */\nconst content$ = defer(() => merge(\n\n /* Announcement bar */\n ...getComponentElements(\"announce\")\n .map(el => mountAnnounce(el)),\n\n /* Content */\n ...getComponentElements(\"content\")\n .map(el => mountContent(el, { viewport$, target$, print$ })),\n\n /* Search highlighting */\n ...getComponentElements(\"content\")\n .map(el => feature(\"search.highlight\")\n ? mountSearchHiglight(el, { index$, location$ })\n : EMPTY\n ),\n\n /* Header title */\n ...getComponentElements(\"header-title\")\n .map(el => mountHeaderTitle(el, { viewport$, header$ })),\n\n /* Sidebar */\n ...getComponentElements(\"sidebar\")\n .map(el => el.getAttribute(\"data-md-type\") === \"navigation\"\n ? at(screen$, () => mountSidebar(el, { viewport$, header$, main$ }))\n : at(tablet$, () => mountSidebar(el, { viewport$, header$, main$ }))\n ),\n\n /* Navigation tabs */\n ...getComponentElements(\"tabs\")\n .map(el => mountTabs(el, { viewport$, header$ })),\n\n /* Table of contents */\n ...getComponentElements(\"toc\")\n .map(el => mountTableOfContents(el, {\n viewport$, header$, main$, target$\n })),\n\n /* Back-to-top button */\n ...getComponentElements(\"top\")\n .map(el => mountBackToTop(el, { viewport$, header$, main$, target$ }))\n))\n\n/* Set up component observables */\nconst component$ = document$\n .pipe(\n switchMap(() => content$),\n mergeWith(control$),\n shareReplay(1)\n )\n\n/* Subscribe to all components */\ncomponent$.subscribe()\n\n/* ----------------------------------------------------------------------------\n * Exports\n * ------------------------------------------------------------------------- */\n\nwindow.document$ = document$ /* Document observable */\nwindow.location$ = location$ /* Location subject */\nwindow.target$ = target$ /* Location target observable */\nwindow.keyboard$ = keyboard$ /* Keyboard observable */\nwindow.viewport$ = viewport$ /* Viewport observable */\nwindow.tablet$ = tablet$ /* Media tablet observable */\nwindow.screen$ = screen$ /* Media screen observable */\nwindow.print$ = print$ /* Media print observable */\nwindow.alert$ = alert$ /* Alert subject */\nwindow.progress$ = progress$ /* Progress indicator subject */\nwindow.component$ = component$ /* Component observable */\n", "/*! *****************************************************************************\r\nCopyright (c) Microsoft Corporation.\r\n\r\nPermission to use, copy, modify, and/or distribute this software for any\r\npurpose with or without fee is hereby granted.\r\n\r\nTHE SOFTWARE IS PROVIDED \"AS IS\" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH\r\nREGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY\r\nAND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,\r\nINDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM\r\nLOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR\r\nOTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR\r\nPERFORMANCE OF THIS SOFTWARE.\r\n***************************************************************************** */\r\n/* global Reflect, Promise */\r\n\r\nvar extendStatics = function(d, b) {\r\n extendStatics = Object.setPrototypeOf ||\r\n ({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||\r\n function (d, b) { for (var p in b) if (Object.prototype.hasOwnProperty.call(b, p)) d[p] = b[p]; };\r\n return extendStatics(d, b);\r\n};\r\n\r\nexport function __extends(d, b) {\r\n if (typeof b !== \"function\" && b !== null)\r\n throw new TypeError(\"Class extends value \" + String(b) + \" is not a constructor or null\");\r\n extendStatics(d, b);\r\n function __() { this.constructor = d; }\r\n d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());\r\n}\r\n\r\nexport var __assign = function() {\r\n __assign = Object.assign || function __assign(t) {\r\n for (var s, i = 1, n = arguments.length; i < n; i++) {\r\n s = arguments[i];\r\n for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p)) t[p] = s[p];\r\n }\r\n return t;\r\n }\r\n return __assign.apply(this, arguments);\r\n}\r\n\r\nexport function __rest(s, e) {\r\n var t = {};\r\n for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p) && e.indexOf(p) < 0)\r\n t[p] = s[p];\r\n if (s != null && typeof Object.getOwnPropertySymbols === \"function\")\r\n for (var i = 0, p = Object.getOwnPropertySymbols(s); i < p.length; i++) {\r\n if (e.indexOf(p[i]) < 0 && Object.prototype.propertyIsEnumerable.call(s, p[i]))\r\n t[p[i]] = s[p[i]];\r\n }\r\n return t;\r\n}\r\n\r\nexport function __decorate(decorators, target, key, desc) {\r\n var c = arguments.length, r = c < 3 ? target : desc === null ? desc = Object.getOwnPropertyDescriptor(target, key) : desc, d;\r\n if (typeof Reflect === \"object\" && typeof Reflect.decorate === \"function\") r = Reflect.decorate(decorators, target, key, desc);\r\n else for (var i = decorators.length - 1; i >= 0; i--) if (d = decorators[i]) r = (c < 3 ? d(r) : c > 3 ? d(target, key, r) : d(target, key)) || r;\r\n return c > 3 && r && Object.defineProperty(target, key, r), r;\r\n}\r\n\r\nexport function __param(paramIndex, decorator) {\r\n return function (target, key) { decorator(target, key, paramIndex); }\r\n}\r\n\r\nexport function __metadata(metadataKey, metadataValue) {\r\n if (typeof Reflect === \"object\" && typeof Reflect.metadata === \"function\") return Reflect.metadata(metadataKey, metadataValue);\r\n}\r\n\r\nexport function __awaiter(thisArg, _arguments, P, generator) {\r\n function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); }\r\n return new (P || (P = Promise))(function (resolve, reject) {\r\n function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }\r\n function rejected(value) { try { step(generator[\"throw\"](value)); } catch (e) { reject(e); } }\r\n function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); }\r\n step((generator = generator.apply(thisArg, _arguments || [])).next());\r\n });\r\n}\r\n\r\nexport function __generator(thisArg, body) {\r\n var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;\r\n return g = { next: verb(0), \"throw\": verb(1), \"return\": verb(2) }, typeof Symbol === \"function\" && (g[Symbol.iterator] = function() { return this; }), g;\r\n function verb(n) { return function (v) { return step([n, v]); }; }\r\n function step(op) {\r\n if (f) throw new TypeError(\"Generator is already executing.\");\r\n while (_) try {\r\n if (f = 1, y && (t = op[0] & 2 ? y[\"return\"] : op[0] ? y[\"throw\"] || ((t = y[\"return\"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;\r\n if (y = 0, t) op = [op[0] & 2, t.value];\r\n switch (op[0]) {\r\n case 0: case 1: t = op; break;\r\n case 4: _.label++; return { value: op[1], done: false };\r\n case 5: _.label++; y = op[1]; op = [0]; continue;\r\n case 7: op = _.ops.pop(); _.trys.pop(); continue;\r\n default:\r\n if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }\r\n if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }\r\n if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }\r\n if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }\r\n if (t[2]) _.ops.pop();\r\n _.trys.pop(); continue;\r\n }\r\n op = body.call(thisArg, _);\r\n } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }\r\n if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };\r\n }\r\n}\r\n\r\nexport var __createBinding = Object.create ? (function(o, m, k, k2) {\r\n if (k2 === undefined) k2 = k;\r\n Object.defineProperty(o, k2, { enumerable: true, get: function() { return m[k]; } });\r\n}) : (function(o, m, k, k2) {\r\n if (k2 === undefined) k2 = k;\r\n o[k2] = m[k];\r\n});\r\n\r\nexport function __exportStar(m, o) {\r\n for (var p in m) if (p !== \"default\" && !Object.prototype.hasOwnProperty.call(o, p)) __createBinding(o, m, p);\r\n}\r\n\r\nexport function __values(o) {\r\n var s = typeof Symbol === \"function\" && Symbol.iterator, m = s && o[s], i = 0;\r\n if (m) return m.call(o);\r\n if (o && typeof o.length === \"number\") return {\r\n next: function () {\r\n if (o && i >= o.length) o = void 0;\r\n return { value: o && o[i++], done: !o };\r\n }\r\n };\r\n throw new TypeError(s ? \"Object is not iterable.\" : \"Symbol.iterator is not defined.\");\r\n}\r\n\r\nexport function __read(o, n) {\r\n var m = typeof Symbol === \"function\" && o[Symbol.iterator];\r\n if (!m) return o;\r\n var i = m.call(o), r, ar = [], e;\r\n try {\r\n while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);\r\n }\r\n catch (error) { e = { error: error }; }\r\n finally {\r\n try {\r\n if (r && !r.done && (m = i[\"return\"])) m.call(i);\r\n }\r\n finally { if (e) throw e.error; }\r\n }\r\n return ar;\r\n}\r\n\r\n/** @deprecated */\r\nexport function __spread() {\r\n for (var ar = [], i = 0; i < arguments.length; i++)\r\n ar = ar.concat(__read(arguments[i]));\r\n return ar;\r\n}\r\n\r\n/** @deprecated */\r\nexport function __spreadArrays() {\r\n for (var s = 0, i = 0, il = arguments.length; i < il; i++) s += arguments[i].length;\r\n for (var r = Array(s), k = 0, i = 0; i < il; i++)\r\n for (var a = arguments[i], j = 0, jl = a.length; j < jl; j++, k++)\r\n r[k] = a[j];\r\n return r;\r\n}\r\n\r\nexport function __spreadArray(to, from, pack) {\r\n if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {\r\n if (ar || !(i in from)) {\r\n if (!ar) ar = Array.prototype.slice.call(from, 0, i);\r\n ar[i] = from[i];\r\n }\r\n }\r\n return to.concat(ar || Array.prototype.slice.call(from));\r\n}\r\n\r\nexport function __await(v) {\r\n return this instanceof __await ? (this.v = v, this) : new __await(v);\r\n}\r\n\r\nexport function __asyncGenerator(thisArg, _arguments, generator) {\r\n if (!Symbol.asyncIterator) throw new TypeError(\"Symbol.asyncIterator is not defined.\");\r\n var g = generator.apply(thisArg, _arguments || []), i, q = [];\r\n return i = {}, verb(\"next\"), verb(\"throw\"), verb(\"return\"), i[Symbol.asyncIterator] = function () { return this; }, i;\r\n function verb(n) { if (g[n]) i[n] = function (v) { return new Promise(function (a, b) { q.push([n, v, a, b]) > 1 || resume(n, v); }); }; }\r\n function resume(n, v) { try { step(g[n](v)); } catch (e) { settle(q[0][3], e); } }\r\n function step(r) { r.value instanceof __await ? Promise.resolve(r.value.v).then(fulfill, reject) : settle(q[0][2], r); }\r\n function fulfill(value) { resume(\"next\", value); }\r\n function reject(value) { resume(\"throw\", value); }\r\n function settle(f, v) { if (f(v), q.shift(), q.length) resume(q[0][0], q[0][1]); }\r\n}\r\n\r\nexport function __asyncDelegator(o) {\r\n var i, p;\r\n return i = {}, verb(\"next\"), verb(\"throw\", function (e) { throw e; }), verb(\"return\"), i[Symbol.iterator] = function () { return this; }, i;\r\n function verb(n, f) { i[n] = o[n] ? function (v) { return (p = !p) ? { value: __await(o[n](v)), done: n === \"return\" } : f ? f(v) : v; } : f; }\r\n}\r\n\r\nexport function __asyncValues(o) {\r\n if (!Symbol.asyncIterator) throw new TypeError(\"Symbol.asyncIterator is not defined.\");\r\n var m = o[Symbol.asyncIterator], i;\r\n return m ? m.call(o) : (o = typeof __values === \"function\" ? __values(o) : o[Symbol.iterator](), i = {}, verb(\"next\"), verb(\"throw\"), verb(\"return\"), i[Symbol.asyncIterator] = function () { return this; }, i);\r\n function verb(n) { i[n] = o[n] && function (v) { return new Promise(function (resolve, reject) { v = o[n](v), settle(resolve, reject, v.done, v.value); }); }; }\r\n function settle(resolve, reject, d, v) { Promise.resolve(v).then(function(v) { resolve({ value: v, done: d }); }, reject); }\r\n}\r\n\r\nexport function __makeTemplateObject(cooked, raw) {\r\n if (Object.defineProperty) { Object.defineProperty(cooked, \"raw\", { value: raw }); } else { cooked.raw = raw; }\r\n return cooked;\r\n};\r\n\r\nvar __setModuleDefault = Object.create ? (function(o, v) {\r\n Object.defineProperty(o, \"default\", { enumerable: true, value: v });\r\n}) : function(o, v) {\r\n o[\"default\"] = v;\r\n};\r\n\r\nexport function __importStar(mod) {\r\n if (mod && mod.__esModule) return mod;\r\n var result = {};\r\n if (mod != null) for (var k in mod) if (k !== \"default\" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);\r\n __setModuleDefault(result, mod);\r\n return result;\r\n}\r\n\r\nexport function __importDefault(mod) {\r\n return (mod && mod.__esModule) ? mod : { default: mod };\r\n}\r\n\r\nexport function __classPrivateFieldGet(receiver, state, kind, f) {\r\n if (kind === \"a\" && !f) throw new TypeError(\"Private accessor was defined without a getter\");\r\n if (typeof state === \"function\" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError(\"Cannot read private member from an object whose class did not declare it\");\r\n return kind === \"m\" ? f : kind === \"a\" ? f.call(receiver) : f ? f.value : state.get(receiver);\r\n}\r\n\r\nexport function __classPrivateFieldSet(receiver, state, value, kind, f) {\r\n if (kind === \"m\") throw new TypeError(\"Private method is not writable\");\r\n if (kind === \"a\" && !f) throw new TypeError(\"Private accessor was defined without a setter\");\r\n if (typeof state === \"function\" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError(\"Cannot write private member to an object whose class did not declare it\");\r\n return (kind === \"a\" ? f.call(receiver, value) : f ? f.value = value : state.set(receiver, value)), value;\r\n}\r\n", "/**\n * Returns true if the object is a function.\n * @param value The value to check\n */\nexport function isFunction(value: any): value is (...args: any[]) => any {\n return typeof value === 'function';\n}\n", "/**\n * Used to create Error subclasses until the community moves away from ES5.\n *\n * This is because compiling from TypeScript down to ES5 has issues with subclassing Errors\n * as well as other built-in types: https://github.com/Microsoft/TypeScript/issues/12123\n *\n * @param createImpl A factory function to create the actual constructor implementation. The returned\n * function should be a named function that calls `_super` internally.\n */\nexport function createErrorClass(createImpl: (_super: any) => any): T {\n const _super = (instance: any) => {\n Error.call(instance);\n instance.stack = new Error().stack;\n };\n\n const ctorFunc = createImpl(_super);\n ctorFunc.prototype = Object.create(Error.prototype);\n ctorFunc.prototype.constructor = ctorFunc;\n return ctorFunc;\n}\n", "import { createErrorClass } from './createErrorClass';\n\nexport interface UnsubscriptionError extends Error {\n readonly errors: any[];\n}\n\nexport interface UnsubscriptionErrorCtor {\n /**\n * @deprecated Internal implementation detail. Do not construct error instances.\n * Cannot be tagged as internal: https://github.com/ReactiveX/rxjs/issues/6269\n */\n new (errors: any[]): UnsubscriptionError;\n}\n\n/**\n * An error thrown when one or more errors have occurred during the\n * `unsubscribe` of a {@link Subscription}.\n */\nexport const UnsubscriptionError: UnsubscriptionErrorCtor = createErrorClass(\n (_super) =>\n function UnsubscriptionErrorImpl(this: any, errors: (Error | string)[]) {\n _super(this);\n this.message = errors\n ? `${errors.length} errors occurred during unsubscription:\n${errors.map((err, i) => `${i + 1}) ${err.toString()}`).join('\\n ')}`\n : '';\n this.name = 'UnsubscriptionError';\n this.errors = errors;\n }\n);\n", "/**\n * Removes an item from an array, mutating it.\n * @param arr The array to remove the item from\n * @param item The item to remove\n */\nexport function arrRemove(arr: T[] | undefined | null, item: T) {\n if (arr) {\n const index = arr.indexOf(item);\n 0 <= index && arr.splice(index, 1);\n }\n}\n", "import { isFunction } from './util/isFunction';\nimport { UnsubscriptionError } from './util/UnsubscriptionError';\nimport { SubscriptionLike, TeardownLogic, Unsubscribable } from './types';\nimport { arrRemove } from './util/arrRemove';\n\n/**\n * Represents a disposable resource, such as the execution of an Observable. A\n * Subscription has one important method, `unsubscribe`, that takes no argument\n * and just disposes the resource held by the subscription.\n *\n * Additionally, subscriptions may be grouped together through the `add()`\n * method, which will attach a child Subscription to the current Subscription.\n * When a Subscription is unsubscribed, all its children (and its grandchildren)\n * will be unsubscribed as well.\n *\n * @class Subscription\n */\nexport class Subscription implements SubscriptionLike {\n /** @nocollapse */\n public static EMPTY = (() => {\n const empty = new Subscription();\n empty.closed = true;\n return empty;\n })();\n\n /**\n * A flag to indicate whether this Subscription has already been unsubscribed.\n */\n public closed = false;\n\n private _parentage: Subscription[] | Subscription | null = null;\n\n /**\n * The list of registered finalizers to execute upon unsubscription. Adding and removing from this\n * list occurs in the {@link #add} and {@link #remove} methods.\n */\n private _finalizers: Exclude[] | null = null;\n\n /**\n * @param initialTeardown A function executed first as part of the finalization\n * process that is kicked off when {@link #unsubscribe} is called.\n */\n constructor(private initialTeardown?: () => void) {}\n\n /**\n * Disposes the resources held by the subscription. May, for instance, cancel\n * an ongoing Observable execution or cancel any other type of work that\n * started when the Subscription was created.\n * @return {void}\n */\n unsubscribe(): void {\n let errors: any[] | undefined;\n\n if (!this.closed) {\n this.closed = true;\n\n // Remove this from it's parents.\n const { _parentage } = this;\n if (_parentage) {\n this._parentage = null;\n if (Array.isArray(_parentage)) {\n for (const parent of _parentage) {\n parent.remove(this);\n }\n } else {\n _parentage.remove(this);\n }\n }\n\n const { initialTeardown: initialFinalizer } = this;\n if (isFunction(initialFinalizer)) {\n try {\n initialFinalizer();\n } catch (e) {\n errors = e instanceof UnsubscriptionError ? e.errors : [e];\n }\n }\n\n const { _finalizers } = this;\n if (_finalizers) {\n this._finalizers = null;\n for (const finalizer of _finalizers) {\n try {\n execFinalizer(finalizer);\n } catch (err) {\n errors = errors ?? [];\n if (err instanceof UnsubscriptionError) {\n errors = [...errors, ...err.errors];\n } else {\n errors.push(err);\n }\n }\n }\n }\n\n if (errors) {\n throw new UnsubscriptionError(errors);\n }\n }\n }\n\n /**\n * Adds a finalizer to this subscription, so that finalization will be unsubscribed/called\n * when this subscription is unsubscribed. If this subscription is already {@link #closed},\n * because it has already been unsubscribed, then whatever finalizer is passed to it\n * will automatically be executed (unless the finalizer itself is also a closed subscription).\n *\n * Closed Subscriptions cannot be added as finalizers to any subscription. Adding a closed\n * subscription to a any subscription will result in no operation. (A noop).\n *\n * Adding a subscription to itself, or adding `null` or `undefined` will not perform any\n * operation at all. (A noop).\n *\n * `Subscription` instances that are added to this instance will automatically remove themselves\n * if they are unsubscribed. Functions and {@link Unsubscribable} objects that you wish to remove\n * will need to be removed manually with {@link #remove}\n *\n * @param teardown The finalization logic to add to this subscription.\n */\n add(teardown: TeardownLogic): void {\n // Only add the finalizer if it's not undefined\n // and don't add a subscription to itself.\n if (teardown && teardown !== this) {\n if (this.closed) {\n // If this subscription is already closed,\n // execute whatever finalizer is handed to it automatically.\n execFinalizer(teardown);\n } else {\n if (teardown instanceof Subscription) {\n // We don't add closed subscriptions, and we don't add the same subscription\n // twice. Subscription unsubscribe is idempotent.\n if (teardown.closed || teardown._hasParent(this)) {\n return;\n }\n teardown._addParent(this);\n }\n (this._finalizers = this._finalizers ?? []).push(teardown);\n }\n }\n }\n\n /**\n * Checks to see if a this subscription already has a particular parent.\n * This will signal that this subscription has already been added to the parent in question.\n * @param parent the parent to check for\n */\n private _hasParent(parent: Subscription) {\n const { _parentage } = this;\n return _parentage === parent || (Array.isArray(_parentage) && _parentage.includes(parent));\n }\n\n /**\n * Adds a parent to this subscription so it can be removed from the parent if it\n * unsubscribes on it's own.\n *\n * NOTE: THIS ASSUMES THAT {@link _hasParent} HAS ALREADY BEEN CHECKED.\n * @param parent The parent subscription to add\n */\n private _addParent(parent: Subscription) {\n const { _parentage } = this;\n this._parentage = Array.isArray(_parentage) ? (_parentage.push(parent), _parentage) : _parentage ? [_parentage, parent] : parent;\n }\n\n /**\n * Called on a child when it is removed via {@link #remove}.\n * @param parent The parent to remove\n */\n private _removeParent(parent: Subscription) {\n const { _parentage } = this;\n if (_parentage === parent) {\n this._parentage = null;\n } else if (Array.isArray(_parentage)) {\n arrRemove(_parentage, parent);\n }\n }\n\n /**\n * Removes a finalizer from this subscription that was previously added with the {@link #add} method.\n *\n * Note that `Subscription` instances, when unsubscribed, will automatically remove themselves\n * from every other `Subscription` they have been added to. This means that using the `remove` method\n * is not a common thing and should be used thoughtfully.\n *\n * If you add the same finalizer instance of a function or an unsubscribable object to a `Subscription` instance\n * more than once, you will need to call `remove` the same number of times to remove all instances.\n *\n * All finalizer instances are removed to free up memory upon unsubscription.\n *\n * @param teardown The finalizer to remove from this subscription\n */\n remove(teardown: Exclude): void {\n const { _finalizers } = this;\n _finalizers && arrRemove(_finalizers, teardown);\n\n if (teardown instanceof Subscription) {\n teardown._removeParent(this);\n }\n }\n}\n\nexport const EMPTY_SUBSCRIPTION = Subscription.EMPTY;\n\nexport function isSubscription(value: any): value is Subscription {\n return (\n value instanceof Subscription ||\n (value && 'closed' in value && isFunction(value.remove) && isFunction(value.add) && isFunction(value.unsubscribe))\n );\n}\n\nfunction execFinalizer(finalizer: Unsubscribable | (() => void)) {\n if (isFunction(finalizer)) {\n finalizer();\n } else {\n finalizer.unsubscribe();\n }\n}\n", "import { Subscriber } from './Subscriber';\nimport { ObservableNotification } from './types';\n\n/**\n * The {@link GlobalConfig} object for RxJS. It is used to configure things\n * like how to react on unhandled errors.\n */\nexport const config: GlobalConfig = {\n onUnhandledError: null,\n onStoppedNotification: null,\n Promise: undefined,\n useDeprecatedSynchronousErrorHandling: false,\n useDeprecatedNextContext: false,\n};\n\n/**\n * The global configuration object for RxJS, used to configure things\n * like how to react on unhandled errors. Accessible via {@link config}\n * object.\n */\nexport interface GlobalConfig {\n /**\n * A registration point for unhandled errors from RxJS. These are errors that\n * cannot were not handled by consuming code in the usual subscription path. For\n * example, if you have this configured, and you subscribe to an observable without\n * providing an error handler, errors from that subscription will end up here. This\n * will _always_ be called asynchronously on another job in the runtime. This is because\n * we do not want errors thrown in this user-configured handler to interfere with the\n * behavior of the library.\n */\n onUnhandledError: ((err: any) => void) | null;\n\n /**\n * A registration point for notifications that cannot be sent to subscribers because they\n * have completed, errored or have been explicitly unsubscribed. By default, next, complete\n * and error notifications sent to stopped subscribers are noops. However, sometimes callers\n * might want a different behavior. For example, with sources that attempt to report errors\n * to stopped subscribers, a caller can configure RxJS to throw an unhandled error instead.\n * This will _always_ be called asynchronously on another job in the runtime. This is because\n * we do not want errors thrown in this user-configured handler to interfere with the\n * behavior of the library.\n */\n onStoppedNotification: ((notification: ObservableNotification, subscriber: Subscriber) => void) | null;\n\n /**\n * The promise constructor used by default for {@link Observable#toPromise toPromise} and {@link Observable#forEach forEach}\n * methods.\n *\n * @deprecated As of version 8, RxJS will no longer support this sort of injection of a\n * Promise constructor. If you need a Promise implementation other than native promises,\n * please polyfill/patch Promise as you see appropriate. Will be removed in v8.\n */\n Promise?: PromiseConstructorLike;\n\n /**\n * If true, turns on synchronous error rethrowing, which is a deprecated behavior\n * in v6 and higher. This behavior enables bad patterns like wrapping a subscribe\n * call in a try/catch block. It also enables producer interference, a nasty bug\n * where a multicast can be broken for all observers by a downstream consumer with\n * an unhandled error. DO NOT USE THIS FLAG UNLESS IT'S NEEDED TO BUY TIME\n * FOR MIGRATION REASONS.\n *\n * @deprecated As of version 8, RxJS will no longer support synchronous throwing\n * of unhandled errors. All errors will be thrown on a separate call stack to prevent bad\n * behaviors described above. Will be removed in v8.\n */\n useDeprecatedSynchronousErrorHandling: boolean;\n\n /**\n * If true, enables an as-of-yet undocumented feature from v5: The ability to access\n * `unsubscribe()` via `this` context in `next` functions created in observers passed\n * to `subscribe`.\n *\n * This is being removed because the performance was severely problematic, and it could also cause\n * issues when types other than POJOs are passed to subscribe as subscribers, as they will likely have\n * their `this` context overwritten.\n *\n * @deprecated As of version 8, RxJS will no longer support altering the\n * context of next functions provided as part of an observer to Subscribe. Instead,\n * you will have access to a subscription or a signal or token that will allow you to do things like\n * unsubscribe and test closed status. Will be removed in v8.\n */\n useDeprecatedNextContext: boolean;\n}\n", "import type { TimerHandle } from './timerHandle';\ntype SetTimeoutFunction = (handler: () => void, timeout?: number, ...args: any[]) => TimerHandle;\ntype ClearTimeoutFunction = (handle: TimerHandle) => void;\n\ninterface TimeoutProvider {\n setTimeout: SetTimeoutFunction;\n clearTimeout: ClearTimeoutFunction;\n delegate:\n | {\n setTimeout: SetTimeoutFunction;\n clearTimeout: ClearTimeoutFunction;\n }\n | undefined;\n}\n\nexport const timeoutProvider: TimeoutProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n setTimeout(handler: () => void, timeout?: number, ...args) {\n const { delegate } = timeoutProvider;\n if (delegate?.setTimeout) {\n return delegate.setTimeout(handler, timeout, ...args);\n }\n return setTimeout(handler, timeout, ...args);\n },\n clearTimeout(handle) {\n const { delegate } = timeoutProvider;\n return (delegate?.clearTimeout || clearTimeout)(handle as any);\n },\n delegate: undefined,\n};\n", "import { config } from '../config';\nimport { timeoutProvider } from '../scheduler/timeoutProvider';\n\n/**\n * Handles an error on another job either with the user-configured {@link onUnhandledError},\n * or by throwing it on that new job so it can be picked up by `window.onerror`, `process.on('error')`, etc.\n *\n * This should be called whenever there is an error that is out-of-band with the subscription\n * or when an error hits a terminal boundary of the subscription and no error handler was provided.\n *\n * @param err the error to report\n */\nexport function reportUnhandledError(err: any) {\n timeoutProvider.setTimeout(() => {\n const { onUnhandledError } = config;\n if (onUnhandledError) {\n // Execute the user-configured error handler.\n onUnhandledError(err);\n } else {\n // Throw so it is picked up by the runtime's uncaught error mechanism.\n throw err;\n }\n });\n}\n", "/* tslint:disable:no-empty */\nexport function noop() { }\n", "import { CompleteNotification, NextNotification, ErrorNotification } from './types';\n\n/**\n * A completion object optimized for memory use and created to be the\n * same \"shape\" as other notifications in v8.\n * @internal\n */\nexport const COMPLETE_NOTIFICATION = (() => createNotification('C', undefined, undefined) as CompleteNotification)();\n\n/**\n * Internal use only. Creates an optimized error notification that is the same \"shape\"\n * as other notifications.\n * @internal\n */\nexport function errorNotification(error: any): ErrorNotification {\n return createNotification('E', undefined, error) as any;\n}\n\n/**\n * Internal use only. Creates an optimized next notification that is the same \"shape\"\n * as other notifications.\n * @internal\n */\nexport function nextNotification(value: T) {\n return createNotification('N', value, undefined) as NextNotification;\n}\n\n/**\n * Ensures that all notifications created internally have the same \"shape\" in v8.\n *\n * TODO: This is only exported to support a crazy legacy test in `groupBy`.\n * @internal\n */\nexport function createNotification(kind: 'N' | 'E' | 'C', value: any, error: any) {\n return {\n kind,\n value,\n error,\n };\n}\n", "import { config } from '../config';\n\nlet context: { errorThrown: boolean; error: any } | null = null;\n\n/**\n * Handles dealing with errors for super-gross mode. Creates a context, in which\n * any synchronously thrown errors will be passed to {@link captureError}. Which\n * will record the error such that it will be rethrown after the call back is complete.\n * TODO: Remove in v8\n * @param cb An immediately executed function.\n */\nexport function errorContext(cb: () => void) {\n if (config.useDeprecatedSynchronousErrorHandling) {\n const isRoot = !context;\n if (isRoot) {\n context = { errorThrown: false, error: null };\n }\n cb();\n if (isRoot) {\n const { errorThrown, error } = context!;\n context = null;\n if (errorThrown) {\n throw error;\n }\n }\n } else {\n // This is the general non-deprecated path for everyone that\n // isn't crazy enough to use super-gross mode (useDeprecatedSynchronousErrorHandling)\n cb();\n }\n}\n\n/**\n * Captures errors only in super-gross mode.\n * @param err the error to capture\n */\nexport function captureError(err: any) {\n if (config.useDeprecatedSynchronousErrorHandling && context) {\n context.errorThrown = true;\n context.error = err;\n }\n}\n", "import { isFunction } from './util/isFunction';\nimport { Observer, ObservableNotification } from './types';\nimport { isSubscription, Subscription } from './Subscription';\nimport { config } from './config';\nimport { reportUnhandledError } from './util/reportUnhandledError';\nimport { noop } from './util/noop';\nimport { nextNotification, errorNotification, COMPLETE_NOTIFICATION } from './NotificationFactories';\nimport { timeoutProvider } from './scheduler/timeoutProvider';\nimport { captureError } from './util/errorContext';\n\n/**\n * Implements the {@link Observer} interface and extends the\n * {@link Subscription} class. While the {@link Observer} is the public API for\n * consuming the values of an {@link Observable}, all Observers get converted to\n * a Subscriber, in order to provide Subscription-like capabilities such as\n * `unsubscribe`. Subscriber is a common type in RxJS, and crucial for\n * implementing operators, but it is rarely used as a public API.\n *\n * @class Subscriber\n */\nexport class Subscriber extends Subscription implements Observer {\n /**\n * A static factory for a Subscriber, given a (potentially partial) definition\n * of an Observer.\n * @param next The `next` callback of an Observer.\n * @param error The `error` callback of an\n * Observer.\n * @param complete The `complete` callback of an\n * Observer.\n * @return A Subscriber wrapping the (partially defined)\n * Observer represented by the given arguments.\n * @nocollapse\n * @deprecated Do not use. Will be removed in v8. There is no replacement for this\n * method, and there is no reason to be creating instances of `Subscriber` directly.\n * If you have a specific use case, please file an issue.\n */\n static create(next?: (x?: T) => void, error?: (e?: any) => void, complete?: () => void): Subscriber {\n return new SafeSubscriber(next, error, complete);\n }\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n protected isStopped: boolean = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n protected destination: Subscriber | Observer; // this `any` is the escape hatch to erase extra type param (e.g. R)\n\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n * There is no reason to directly create an instance of Subscriber. This type is exported for typings reasons.\n */\n constructor(destination?: Subscriber | Observer) {\n super();\n if (destination) {\n this.destination = destination;\n // Automatically chain subscriptions together here.\n // if destination is a Subscription, then it is a Subscriber.\n if (isSubscription(destination)) {\n destination.add(this);\n }\n } else {\n this.destination = EMPTY_OBSERVER;\n }\n }\n\n /**\n * The {@link Observer} callback to receive notifications of type `next` from\n * the Observable, with a value. The Observable may call this method 0 or more\n * times.\n * @param {T} [value] The `next` value.\n * @return {void}\n */\n next(value?: T): void {\n if (this.isStopped) {\n handleStoppedNotification(nextNotification(value), this);\n } else {\n this._next(value!);\n }\n }\n\n /**\n * The {@link Observer} callback to receive notifications of type `error` from\n * the Observable, with an attached `Error`. Notifies the Observer that\n * the Observable has experienced an error condition.\n * @param {any} [err] The `error` exception.\n * @return {void}\n */\n error(err?: any): void {\n if (this.isStopped) {\n handleStoppedNotification(errorNotification(err), this);\n } else {\n this.isStopped = true;\n this._error(err);\n }\n }\n\n /**\n * The {@link Observer} callback to receive a valueless notification of type\n * `complete` from the Observable. Notifies the Observer that the Observable\n * has finished sending push-based notifications.\n * @return {void}\n */\n complete(): void {\n if (this.isStopped) {\n handleStoppedNotification(COMPLETE_NOTIFICATION, this);\n } else {\n this.isStopped = true;\n this._complete();\n }\n }\n\n unsubscribe(): void {\n if (!this.closed) {\n this.isStopped = true;\n super.unsubscribe();\n this.destination = null!;\n }\n }\n\n protected _next(value: T): void {\n this.destination.next(value);\n }\n\n protected _error(err: any): void {\n try {\n this.destination.error(err);\n } finally {\n this.unsubscribe();\n }\n }\n\n protected _complete(): void {\n try {\n this.destination.complete();\n } finally {\n this.unsubscribe();\n }\n }\n}\n\n/**\n * This bind is captured here because we want to be able to have\n * compatibility with monoid libraries that tend to use a method named\n * `bind`. In particular, a library called Monio requires this.\n */\nconst _bind = Function.prototype.bind;\n\nfunction bind any>(fn: Fn, thisArg: any): Fn {\n return _bind.call(fn, thisArg);\n}\n\n/**\n * Internal optimization only, DO NOT EXPOSE.\n * @internal\n */\nclass ConsumerObserver implements Observer {\n constructor(private partialObserver: Partial>) {}\n\n next(value: T): void {\n const { partialObserver } = this;\n if (partialObserver.next) {\n try {\n partialObserver.next(value);\n } catch (error) {\n handleUnhandledError(error);\n }\n }\n }\n\n error(err: any): void {\n const { partialObserver } = this;\n if (partialObserver.error) {\n try {\n partialObserver.error(err);\n } catch (error) {\n handleUnhandledError(error);\n }\n } else {\n handleUnhandledError(err);\n }\n }\n\n complete(): void {\n const { partialObserver } = this;\n if (partialObserver.complete) {\n try {\n partialObserver.complete();\n } catch (error) {\n handleUnhandledError(error);\n }\n }\n }\n}\n\nexport class SafeSubscriber extends Subscriber {\n constructor(\n observerOrNext?: Partial> | ((value: T) => void) | null,\n error?: ((e?: any) => void) | null,\n complete?: (() => void) | null\n ) {\n super();\n\n let partialObserver: Partial>;\n if (isFunction(observerOrNext) || !observerOrNext) {\n // The first argument is a function, not an observer. The next\n // two arguments *could* be observers, or they could be empty.\n partialObserver = {\n next: (observerOrNext ?? undefined) as (((value: T) => void) | undefined),\n error: error ?? undefined,\n complete: complete ?? undefined,\n };\n } else {\n // The first argument is a partial observer.\n let context: any;\n if (this && config.useDeprecatedNextContext) {\n // This is a deprecated path that made `this.unsubscribe()` available in\n // next handler functions passed to subscribe. This only exists behind a flag\n // now, as it is *very* slow.\n context = Object.create(observerOrNext);\n context.unsubscribe = () => this.unsubscribe();\n partialObserver = {\n next: observerOrNext.next && bind(observerOrNext.next, context),\n error: observerOrNext.error && bind(observerOrNext.error, context),\n complete: observerOrNext.complete && bind(observerOrNext.complete, context),\n };\n } else {\n // The \"normal\" path. Just use the partial observer directly.\n partialObserver = observerOrNext;\n }\n }\n\n // Wrap the partial observer to ensure it's a full observer, and\n // make sure proper error handling is accounted for.\n this.destination = new ConsumerObserver(partialObserver);\n }\n}\n\nfunction handleUnhandledError(error: any) {\n if (config.useDeprecatedSynchronousErrorHandling) {\n captureError(error);\n } else {\n // Ideal path, we report this as an unhandled error,\n // which is thrown on a new call stack.\n reportUnhandledError(error);\n }\n}\n\n/**\n * An error handler used when no error handler was supplied\n * to the SafeSubscriber -- meaning no error handler was supplied\n * do the `subscribe` call on our observable.\n * @param err The error to handle\n */\nfunction defaultErrorHandler(err: any) {\n throw err;\n}\n\n/**\n * A handler for notifications that cannot be sent to a stopped subscriber.\n * @param notification The notification being sent\n * @param subscriber The stopped subscriber\n */\nfunction handleStoppedNotification(notification: ObservableNotification, subscriber: Subscriber) {\n const { onStoppedNotification } = config;\n onStoppedNotification && timeoutProvider.setTimeout(() => onStoppedNotification(notification, subscriber));\n}\n\n/**\n * The observer used as a stub for subscriptions where the user did not\n * pass any arguments to `subscribe`. Comes with the default error handling\n * behavior.\n */\nexport const EMPTY_OBSERVER: Readonly> & { closed: true } = {\n closed: true,\n next: noop,\n error: defaultErrorHandler,\n complete: noop,\n};\n", "/**\n * Symbol.observable or a string \"@@observable\". Used for interop\n *\n * @deprecated We will no longer be exporting this symbol in upcoming versions of RxJS.\n * Instead polyfill and use Symbol.observable directly *or* use https://www.npmjs.com/package/symbol-observable\n */\nexport const observable: string | symbol = (() => (typeof Symbol === 'function' && Symbol.observable) || '@@observable')();\n", "/**\n * This function takes one parameter and just returns it. Simply put,\n * this is like `(x: T): T => x`.\n *\n * ## Examples\n *\n * This is useful in some cases when using things like `mergeMap`\n *\n * ```ts\n * import { interval, take, map, range, mergeMap, identity } from 'rxjs';\n *\n * const source$ = interval(1000).pipe(take(5));\n *\n * const result$ = source$.pipe(\n * map(i => range(i)),\n * mergeMap(identity) // same as mergeMap(x => x)\n * );\n *\n * result$.subscribe({\n * next: console.log\n * });\n * ```\n *\n * Or when you want to selectively apply an operator\n *\n * ```ts\n * import { interval, take, identity } from 'rxjs';\n *\n * const shouldLimit = () => Math.random() < 0.5;\n *\n * const source$ = interval(1000);\n *\n * const result$ = source$.pipe(shouldLimit() ? take(5) : identity);\n *\n * result$.subscribe({\n * next: console.log\n * });\n * ```\n *\n * @param x Any value that is returned by this function\n * @returns The value passed as the first parameter to this function\n */\nexport function identity(x: T): T {\n return x;\n}\n", "import { identity } from './identity';\nimport { UnaryFunction } from '../types';\n\nexport function pipe(): typeof identity;\nexport function pipe(fn1: UnaryFunction): UnaryFunction;\nexport function pipe(fn1: UnaryFunction, fn2: UnaryFunction): UnaryFunction;\nexport function pipe(fn1: UnaryFunction, fn2: UnaryFunction, fn3: UnaryFunction): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction,\n fn9: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction,\n fn9: UnaryFunction,\n ...fns: UnaryFunction[]\n): UnaryFunction;\n\n/**\n * pipe() can be called on one or more functions, each of which can take one argument (\"UnaryFunction\")\n * and uses it to return a value.\n * It returns a function that takes one argument, passes it to the first UnaryFunction, and then\n * passes the result to the next one, passes that result to the next one, and so on. \n */\nexport function pipe(...fns: Array>): UnaryFunction {\n return pipeFromArray(fns);\n}\n\n/** @internal */\nexport function pipeFromArray(fns: Array>): UnaryFunction {\n if (fns.length === 0) {\n return identity as UnaryFunction;\n }\n\n if (fns.length === 1) {\n return fns[0];\n }\n\n return function piped(input: T): R {\n return fns.reduce((prev: any, fn: UnaryFunction) => fn(prev), input as any);\n };\n}\n", "import { Operator } from './Operator';\nimport { SafeSubscriber, Subscriber } from './Subscriber';\nimport { isSubscription, Subscription } from './Subscription';\nimport { TeardownLogic, OperatorFunction, Subscribable, Observer } from './types';\nimport { observable as Symbol_observable } from './symbol/observable';\nimport { pipeFromArray } from './util/pipe';\nimport { config } from './config';\nimport { isFunction } from './util/isFunction';\nimport { errorContext } from './util/errorContext';\n\n/**\n * A representation of any set of values over any amount of time. This is the most basic building block\n * of RxJS.\n *\n * @class Observable\n */\nexport class Observable implements Subscribable {\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n */\n source: Observable | undefined;\n\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n */\n operator: Operator | undefined;\n\n /**\n * @constructor\n * @param {Function} subscribe the function that is called when the Observable is\n * initially subscribed to. This function is given a Subscriber, to which new values\n * can be `next`ed, or an `error` method can be called to raise an error, or\n * `complete` can be called to notify of a successful completion.\n */\n constructor(subscribe?: (this: Observable, subscriber: Subscriber) => TeardownLogic) {\n if (subscribe) {\n this._subscribe = subscribe;\n }\n }\n\n // HACK: Since TypeScript inherits static properties too, we have to\n // fight against TypeScript here so Subject can have a different static create signature\n /**\n * Creates a new Observable by calling the Observable constructor\n * @owner Observable\n * @method create\n * @param {Function} subscribe? the subscriber function to be passed to the Observable constructor\n * @return {Observable} a new observable\n * @nocollapse\n * @deprecated Use `new Observable()` instead. Will be removed in v8.\n */\n static create: (...args: any[]) => any = (subscribe?: (subscriber: Subscriber) => TeardownLogic) => {\n return new Observable(subscribe);\n };\n\n /**\n * Creates a new Observable, with this Observable instance as the source, and the passed\n * operator defined as the new observable's operator.\n * @method lift\n * @param operator the operator defining the operation to take on the observable\n * @return a new observable with the Operator applied\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n * If you have implemented an operator using `lift`, it is recommended that you create an\n * operator by simply returning `new Observable()` directly. See \"Creating new operators from\n * scratch\" section here: https://rxjs.dev/guide/operators\n */\n lift(operator?: Operator): Observable {\n const observable = new Observable();\n observable.source = this;\n observable.operator = operator;\n return observable;\n }\n\n subscribe(observerOrNext?: Partial> | ((value: T) => void)): Subscription;\n /** @deprecated Instead of passing separate callback arguments, use an observer argument. Signatures taking separate callback arguments will be removed in v8. Details: https://rxjs.dev/deprecations/subscribe-arguments */\n subscribe(next?: ((value: T) => void) | null, error?: ((error: any) => void) | null, complete?: (() => void) | null): Subscription;\n /**\n * Invokes an execution of an Observable and registers Observer handlers for notifications it will emit.\n *\n * Use it when you have all these Observables, but still nothing is happening.\n *\n * `subscribe` is not a regular operator, but a method that calls Observable's internal `subscribe` function. It\n * might be for example a function that you passed to Observable's constructor, but most of the time it is\n * a library implementation, which defines what will be emitted by an Observable, and when it be will emitted. This means\n * that calling `subscribe` is actually the moment when Observable starts its work, not when it is created, as it is often\n * the thought.\n *\n * Apart from starting the execution of an Observable, this method allows you to listen for values\n * that an Observable emits, as well as for when it completes or errors. You can achieve this in two\n * of the following ways.\n *\n * The first way is creating an object that implements {@link Observer} interface. It should have methods\n * defined by that interface, but note that it should be just a regular JavaScript object, which you can create\n * yourself in any way you want (ES6 class, classic function constructor, object literal etc.). In particular, do\n * not attempt to use any RxJS implementation details to create Observers - you don't need them. Remember also\n * that your object does not have to implement all methods. If you find yourself creating a method that doesn't\n * do anything, you can simply omit it. Note however, if the `error` method is not provided and an error happens,\n * it will be thrown asynchronously. Errors thrown asynchronously cannot be caught using `try`/`catch`. Instead,\n * use the {@link onUnhandledError} configuration option or use a runtime handler (like `window.onerror` or\n * `process.on('error)`) to be notified of unhandled errors. Because of this, it's recommended that you provide\n * an `error` method to avoid missing thrown errors.\n *\n * The second way is to give up on Observer object altogether and simply provide callback functions in place of its methods.\n * This means you can provide three functions as arguments to `subscribe`, where the first function is equivalent\n * of a `next` method, the second of an `error` method and the third of a `complete` method. Just as in case of an Observer,\n * if you do not need to listen for something, you can omit a function by passing `undefined` or `null`,\n * since `subscribe` recognizes these functions by where they were placed in function call. When it comes\n * to the `error` function, as with an Observer, if not provided, errors emitted by an Observable will be thrown asynchronously.\n *\n * You can, however, subscribe with no parameters at all. This may be the case where you're not interested in terminal events\n * and you also handled emissions internally by using operators (e.g. using `tap`).\n *\n * Whichever style of calling `subscribe` you use, in both cases it returns a Subscription object.\n * This object allows you to call `unsubscribe` on it, which in turn will stop the work that an Observable does and will clean\n * up all resources that an Observable used. Note that cancelling a subscription will not call `complete` callback\n * provided to `subscribe` function, which is reserved for a regular completion signal that comes from an Observable.\n *\n * Remember that callbacks provided to `subscribe` are not guaranteed to be called asynchronously.\n * It is an Observable itself that decides when these functions will be called. For example {@link of}\n * by default emits all its values synchronously. Always check documentation for how given Observable\n * will behave when subscribed and if its default behavior can be modified with a `scheduler`.\n *\n * #### Examples\n *\n * Subscribe with an {@link guide/observer Observer}\n *\n * ```ts\n * import { of } from 'rxjs';\n *\n * const sumObserver = {\n * sum: 0,\n * next(value) {\n * console.log('Adding: ' + value);\n * this.sum = this.sum + value;\n * },\n * error() {\n * // We actually could just remove this method,\n * // since we do not really care about errors right now.\n * },\n * complete() {\n * console.log('Sum equals: ' + this.sum);\n * }\n * };\n *\n * of(1, 2, 3) // Synchronously emits 1, 2, 3 and then completes.\n * .subscribe(sumObserver);\n *\n * // Logs:\n * // 'Adding: 1'\n * // 'Adding: 2'\n * // 'Adding: 3'\n * // 'Sum equals: 6'\n * ```\n *\n * Subscribe with functions ({@link deprecations/subscribe-arguments deprecated})\n *\n * ```ts\n * import { of } from 'rxjs'\n *\n * let sum = 0;\n *\n * of(1, 2, 3).subscribe(\n * value => {\n * console.log('Adding: ' + value);\n * sum = sum + value;\n * },\n * undefined,\n * () => console.log('Sum equals: ' + sum)\n * );\n *\n * // Logs:\n * // 'Adding: 1'\n * // 'Adding: 2'\n * // 'Adding: 3'\n * // 'Sum equals: 6'\n * ```\n *\n * Cancel a subscription\n *\n * ```ts\n * import { interval } from 'rxjs';\n *\n * const subscription = interval(1000).subscribe({\n * next(num) {\n * console.log(num)\n * },\n * complete() {\n * // Will not be called, even when cancelling subscription.\n * console.log('completed!');\n * }\n * });\n *\n * setTimeout(() => {\n * subscription.unsubscribe();\n * console.log('unsubscribed!');\n * }, 2500);\n *\n * // Logs:\n * // 0 after 1s\n * // 1 after 2s\n * // 'unsubscribed!' after 2.5s\n * ```\n *\n * @param {Observer|Function} observerOrNext (optional) Either an observer with methods to be called,\n * or the first of three possible handlers, which is the handler for each value emitted from the subscribed\n * Observable.\n * @param {Function} error (optional) A handler for a terminal event resulting from an error. If no error handler is provided,\n * the error will be thrown asynchronously as unhandled.\n * @param {Function} complete (optional) A handler for a terminal event resulting from successful completion.\n * @return {Subscription} a subscription reference to the registered handlers\n * @method subscribe\n */\n subscribe(\n observerOrNext?: Partial> | ((value: T) => void) | null,\n error?: ((error: any) => void) | null,\n complete?: (() => void) | null\n ): Subscription {\n const subscriber = isSubscriber(observerOrNext) ? observerOrNext : new SafeSubscriber(observerOrNext, error, complete);\n\n errorContext(() => {\n const { operator, source } = this;\n subscriber.add(\n operator\n ? // We're dealing with a subscription in the\n // operator chain to one of our lifted operators.\n operator.call(subscriber, source)\n : source\n ? // If `source` has a value, but `operator` does not, something that\n // had intimate knowledge of our API, like our `Subject`, must have\n // set it. We're going to just call `_subscribe` directly.\n this._subscribe(subscriber)\n : // In all other cases, we're likely wrapping a user-provided initializer\n // function, so we need to catch errors and handle them appropriately.\n this._trySubscribe(subscriber)\n );\n });\n\n return subscriber;\n }\n\n /** @internal */\n protected _trySubscribe(sink: Subscriber): TeardownLogic {\n try {\n return this._subscribe(sink);\n } catch (err) {\n // We don't need to return anything in this case,\n // because it's just going to try to `add()` to a subscription\n // above.\n sink.error(err);\n }\n }\n\n /**\n * Used as a NON-CANCELLABLE means of subscribing to an observable, for use with\n * APIs that expect promises, like `async/await`. You cannot unsubscribe from this.\n *\n * **WARNING**: Only use this with observables you *know* will complete. If the source\n * observable does not complete, you will end up with a promise that is hung up, and\n * potentially all of the state of an async function hanging out in memory. To avoid\n * this situation, look into adding something like {@link timeout}, {@link take},\n * {@link takeWhile}, or {@link takeUntil} amongst others.\n *\n * #### Example\n *\n * ```ts\n * import { interval, take } from 'rxjs';\n *\n * const source$ = interval(1000).pipe(take(4));\n *\n * async function getTotal() {\n * let total = 0;\n *\n * await source$.forEach(value => {\n * total += value;\n * console.log('observable -> ' + value);\n * });\n *\n * return total;\n * }\n *\n * getTotal().then(\n * total => console.log('Total: ' + total)\n * );\n *\n * // Expected:\n * // 'observable -> 0'\n * // 'observable -> 1'\n * // 'observable -> 2'\n * // 'observable -> 3'\n * // 'Total: 6'\n * ```\n *\n * @param next a handler for each value emitted by the observable\n * @return a promise that either resolves on observable completion or\n * rejects with the handled error\n */\n forEach(next: (value: T) => void): Promise;\n\n /**\n * @param next a handler for each value emitted by the observable\n * @param promiseCtor a constructor function used to instantiate the Promise\n * @return a promise that either resolves on observable completion or\n * rejects with the handled error\n * @deprecated Passing a Promise constructor will no longer be available\n * in upcoming versions of RxJS. This is because it adds weight to the library, for very\n * little benefit. If you need this functionality, it is recommended that you either\n * polyfill Promise, or you create an adapter to convert the returned native promise\n * to whatever promise implementation you wanted. Will be removed in v8.\n */\n forEach(next: (value: T) => void, promiseCtor: PromiseConstructorLike): Promise;\n\n forEach(next: (value: T) => void, promiseCtor?: PromiseConstructorLike): Promise {\n promiseCtor = getPromiseCtor(promiseCtor);\n\n return new promiseCtor((resolve, reject) => {\n const subscriber = new SafeSubscriber({\n next: (value) => {\n try {\n next(value);\n } catch (err) {\n reject(err);\n subscriber.unsubscribe();\n }\n },\n error: reject,\n complete: resolve,\n });\n this.subscribe(subscriber);\n }) as Promise;\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): TeardownLogic {\n return this.source?.subscribe(subscriber);\n }\n\n /**\n * An interop point defined by the es7-observable spec https://github.com/zenparsing/es-observable\n * @method Symbol.observable\n * @return {Observable} this instance of the observable\n */\n [Symbol_observable]() {\n return this;\n }\n\n /* tslint:disable:max-line-length */\n pipe(): Observable;\n pipe(op1: OperatorFunction): Observable;\n pipe(op1: OperatorFunction, op2: OperatorFunction): Observable;\n pipe(op1: OperatorFunction, op2: OperatorFunction, op3: OperatorFunction): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction,\n op9: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction,\n op9: OperatorFunction,\n ...operations: OperatorFunction[]\n ): Observable;\n /* tslint:enable:max-line-length */\n\n /**\n * Used to stitch together functional operators into a chain.\n * @method pipe\n * @return {Observable} the Observable result of all of the operators having\n * been called in the order they were passed in.\n *\n * ## Example\n *\n * ```ts\n * import { interval, filter, map, scan } from 'rxjs';\n *\n * interval(1000)\n * .pipe(\n * filter(x => x % 2 === 0),\n * map(x => x + x),\n * scan((acc, x) => acc + x)\n * )\n * .subscribe(x => console.log(x));\n * ```\n */\n pipe(...operations: OperatorFunction[]): Observable {\n return pipeFromArray(operations)(this);\n }\n\n /* tslint:disable:max-line-length */\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(): Promise;\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(PromiseCtor: typeof Promise): Promise;\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(PromiseCtor: PromiseConstructorLike): Promise;\n /* tslint:enable:max-line-length */\n\n /**\n * Subscribe to this Observable and get a Promise resolving on\n * `complete` with the last emission (if any).\n *\n * **WARNING**: Only use this with observables you *know* will complete. If the source\n * observable does not complete, you will end up with a promise that is hung up, and\n * potentially all of the state of an async function hanging out in memory. To avoid\n * this situation, look into adding something like {@link timeout}, {@link take},\n * {@link takeWhile}, or {@link takeUntil} amongst others.\n *\n * @method toPromise\n * @param [promiseCtor] a constructor function used to instantiate\n * the Promise\n * @return A Promise that resolves with the last value emit, or\n * rejects on an error. If there were no emissions, Promise\n * resolves with undefined.\n * @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise\n */\n toPromise(promiseCtor?: PromiseConstructorLike): Promise {\n promiseCtor = getPromiseCtor(promiseCtor);\n\n return new promiseCtor((resolve, reject) => {\n let value: T | undefined;\n this.subscribe(\n (x: T) => (value = x),\n (err: any) => reject(err),\n () => resolve(value)\n );\n }) as Promise;\n }\n}\n\n/**\n * Decides between a passed promise constructor from consuming code,\n * A default configured promise constructor, and the native promise\n * constructor and returns it. If nothing can be found, it will throw\n * an error.\n * @param promiseCtor The optional promise constructor to passed by consuming code\n */\nfunction getPromiseCtor(promiseCtor: PromiseConstructorLike | undefined) {\n return promiseCtor ?? config.Promise ?? Promise;\n}\n\nfunction isObserver(value: any): value is Observer {\n return value && isFunction(value.next) && isFunction(value.error) && isFunction(value.complete);\n}\n\nfunction isSubscriber(value: any): value is Subscriber {\n return (value && value instanceof Subscriber) || (isObserver(value) && isSubscription(value));\n}\n", "import { Observable } from '../Observable';\nimport { Subscriber } from '../Subscriber';\nimport { OperatorFunction } from '../types';\nimport { isFunction } from './isFunction';\n\n/**\n * Used to determine if an object is an Observable with a lift function.\n */\nexport function hasLift(source: any): source is { lift: InstanceType['lift'] } {\n return isFunction(source?.lift);\n}\n\n/**\n * Creates an `OperatorFunction`. Used to define operators throughout the library in a concise way.\n * @param init The logic to connect the liftedSource to the subscriber at the moment of subscription.\n */\nexport function operate(\n init: (liftedSource: Observable, subscriber: Subscriber) => (() => void) | void\n): OperatorFunction {\n return (source: Observable) => {\n if (hasLift(source)) {\n return source.lift(function (this: Subscriber, liftedSource: Observable) {\n try {\n return init(liftedSource, this);\n } catch (err) {\n this.error(err);\n }\n });\n }\n throw new TypeError('Unable to lift unknown Observable type');\n };\n}\n", "import { Subscriber } from '../Subscriber';\n\n/**\n * Creates an instance of an `OperatorSubscriber`.\n * @param destination The downstream subscriber.\n * @param onNext Handles next values, only called if this subscriber is not stopped or closed. Any\n * error that occurs in this function is caught and sent to the `error` method of this subscriber.\n * @param onError Handles errors from the subscription, any errors that occur in this handler are caught\n * and send to the `destination` error handler.\n * @param onComplete Handles completion notification from the subscription. Any errors that occur in\n * this handler are sent to the `destination` error handler.\n * @param onFinalize Additional teardown logic here. This will only be called on teardown if the\n * subscriber itself is not already closed. This is called after all other teardown logic is executed.\n */\nexport function createOperatorSubscriber(\n destination: Subscriber,\n onNext?: (value: T) => void,\n onComplete?: () => void,\n onError?: (err: any) => void,\n onFinalize?: () => void\n): Subscriber {\n return new OperatorSubscriber(destination, onNext, onComplete, onError, onFinalize);\n}\n\n/**\n * A generic helper for allowing operators to be created with a Subscriber and\n * use closures to capture necessary state from the operator function itself.\n */\nexport class OperatorSubscriber extends Subscriber {\n /**\n * Creates an instance of an `OperatorSubscriber`.\n * @param destination The downstream subscriber.\n * @param onNext Handles next values, only called if this subscriber is not stopped or closed. Any\n * error that occurs in this function is caught and sent to the `error` method of this subscriber.\n * @param onError Handles errors from the subscription, any errors that occur in this handler are caught\n * and send to the `destination` error handler.\n * @param onComplete Handles completion notification from the subscription. Any errors that occur in\n * this handler are sent to the `destination` error handler.\n * @param onFinalize Additional finalization logic here. This will only be called on finalization if the\n * subscriber itself is not already closed. This is called after all other finalization logic is executed.\n * @param shouldUnsubscribe An optional check to see if an unsubscribe call should truly unsubscribe.\n * NOTE: This currently **ONLY** exists to support the strange behavior of {@link groupBy}, where unsubscription\n * to the resulting observable does not actually disconnect from the source if there are active subscriptions\n * to any grouped observable. (DO NOT EXPOSE OR USE EXTERNALLY!!!)\n */\n constructor(\n destination: Subscriber,\n onNext?: (value: T) => void,\n onComplete?: () => void,\n onError?: (err: any) => void,\n private onFinalize?: () => void,\n private shouldUnsubscribe?: () => boolean\n ) {\n // It's important - for performance reasons - that all of this class's\n // members are initialized and that they are always initialized in the same\n // order. This will ensure that all OperatorSubscriber instances have the\n // same hidden class in V8. This, in turn, will help keep the number of\n // hidden classes involved in property accesses within the base class as\n // low as possible. If the number of hidden classes involved exceeds four,\n // the property accesses will become megamorphic and performance penalties\n // will be incurred - i.e. inline caches won't be used.\n //\n // The reasons for ensuring all instances have the same hidden class are\n // further discussed in this blog post from Benedikt Meurer:\n // https://benediktmeurer.de/2018/03/23/impact-of-polymorphism-on-component-based-frameworks-like-react/\n super(destination);\n this._next = onNext\n ? function (this: OperatorSubscriber, value: T) {\n try {\n onNext(value);\n } catch (err) {\n destination.error(err);\n }\n }\n : super._next;\n this._error = onError\n ? function (this: OperatorSubscriber, err: any) {\n try {\n onError(err);\n } catch (err) {\n // Send any errors that occur down stream.\n destination.error(err);\n } finally {\n // Ensure finalization.\n this.unsubscribe();\n }\n }\n : super._error;\n this._complete = onComplete\n ? function (this: OperatorSubscriber) {\n try {\n onComplete();\n } catch (err) {\n // Send any errors that occur down stream.\n destination.error(err);\n } finally {\n // Ensure finalization.\n this.unsubscribe();\n }\n }\n : super._complete;\n }\n\n unsubscribe() {\n if (!this.shouldUnsubscribe || this.shouldUnsubscribe()) {\n const { closed } = this;\n super.unsubscribe();\n // Execute additional teardown if we have any and we didn't already do so.\n !closed && this.onFinalize?.();\n }\n }\n}\n", "import { Subscription } from '../Subscription';\n\ninterface AnimationFrameProvider {\n schedule(callback: FrameRequestCallback): Subscription;\n requestAnimationFrame: typeof requestAnimationFrame;\n cancelAnimationFrame: typeof cancelAnimationFrame;\n delegate:\n | {\n requestAnimationFrame: typeof requestAnimationFrame;\n cancelAnimationFrame: typeof cancelAnimationFrame;\n }\n | undefined;\n}\n\nexport const animationFrameProvider: AnimationFrameProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n schedule(callback) {\n let request = requestAnimationFrame;\n let cancel: typeof cancelAnimationFrame | undefined = cancelAnimationFrame;\n const { delegate } = animationFrameProvider;\n if (delegate) {\n request = delegate.requestAnimationFrame;\n cancel = delegate.cancelAnimationFrame;\n }\n const handle = request((timestamp) => {\n // Clear the cancel function. The request has been fulfilled, so\n // attempting to cancel the request upon unsubscription would be\n // pointless.\n cancel = undefined;\n callback(timestamp);\n });\n return new Subscription(() => cancel?.(handle));\n },\n requestAnimationFrame(...args) {\n const { delegate } = animationFrameProvider;\n return (delegate?.requestAnimationFrame || requestAnimationFrame)(...args);\n },\n cancelAnimationFrame(...args) {\n const { delegate } = animationFrameProvider;\n return (delegate?.cancelAnimationFrame || cancelAnimationFrame)(...args);\n },\n delegate: undefined,\n};\n", "import { createErrorClass } from './createErrorClass';\n\nexport interface ObjectUnsubscribedError extends Error {}\n\nexport interface ObjectUnsubscribedErrorCtor {\n /**\n * @deprecated Internal implementation detail. Do not construct error instances.\n * Cannot be tagged as internal: https://github.com/ReactiveX/rxjs/issues/6269\n */\n new (): ObjectUnsubscribedError;\n}\n\n/**\n * An error thrown when an action is invalid because the object has been\n * unsubscribed.\n *\n * @see {@link Subject}\n * @see {@link BehaviorSubject}\n *\n * @class ObjectUnsubscribedError\n */\nexport const ObjectUnsubscribedError: ObjectUnsubscribedErrorCtor = createErrorClass(\n (_super) =>\n function ObjectUnsubscribedErrorImpl(this: any) {\n _super(this);\n this.name = 'ObjectUnsubscribedError';\n this.message = 'object unsubscribed';\n }\n);\n", "import { Operator } from './Operator';\nimport { Observable } from './Observable';\nimport { Subscriber } from './Subscriber';\nimport { Subscription, EMPTY_SUBSCRIPTION } from './Subscription';\nimport { Observer, SubscriptionLike, TeardownLogic } from './types';\nimport { ObjectUnsubscribedError } from './util/ObjectUnsubscribedError';\nimport { arrRemove } from './util/arrRemove';\nimport { errorContext } from './util/errorContext';\n\n/**\n * A Subject is a special type of Observable that allows values to be\n * multicasted to many Observers. Subjects are like EventEmitters.\n *\n * Every Subject is an Observable and an Observer. You can subscribe to a\n * Subject, and you can call next to feed values as well as error and complete.\n */\nexport class Subject extends Observable implements SubscriptionLike {\n closed = false;\n\n private currentObservers: Observer[] | null = null;\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n observers: Observer[] = [];\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n isStopped = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n hasError = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n thrownError: any = null;\n\n /**\n * Creates a \"subject\" by basically gluing an observer to an observable.\n *\n * @nocollapse\n * @deprecated Recommended you do not use. Will be removed at some point in the future. Plans for replacement still under discussion.\n */\n static create: (...args: any[]) => any = (destination: Observer, source: Observable): AnonymousSubject => {\n return new AnonymousSubject(destination, source);\n };\n\n constructor() {\n // NOTE: This must be here to obscure Observable's constructor.\n super();\n }\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n lift(operator: Operator): Observable {\n const subject = new AnonymousSubject(this, this);\n subject.operator = operator as any;\n return subject as any;\n }\n\n /** @internal */\n protected _throwIfClosed() {\n if (this.closed) {\n throw new ObjectUnsubscribedError();\n }\n }\n\n next(value: T) {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n if (!this.currentObservers) {\n this.currentObservers = Array.from(this.observers);\n }\n for (const observer of this.currentObservers) {\n observer.next(value);\n }\n }\n });\n }\n\n error(err: any) {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n this.hasError = this.isStopped = true;\n this.thrownError = err;\n const { observers } = this;\n while (observers.length) {\n observers.shift()!.error(err);\n }\n }\n });\n }\n\n complete() {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n this.isStopped = true;\n const { observers } = this;\n while (observers.length) {\n observers.shift()!.complete();\n }\n }\n });\n }\n\n unsubscribe() {\n this.isStopped = this.closed = true;\n this.observers = this.currentObservers = null!;\n }\n\n get observed() {\n return this.observers?.length > 0;\n }\n\n /** @internal */\n protected _trySubscribe(subscriber: Subscriber): TeardownLogic {\n this._throwIfClosed();\n return super._trySubscribe(subscriber);\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n this._throwIfClosed();\n this._checkFinalizedStatuses(subscriber);\n return this._innerSubscribe(subscriber);\n }\n\n /** @internal */\n protected _innerSubscribe(subscriber: Subscriber) {\n const { hasError, isStopped, observers } = this;\n if (hasError || isStopped) {\n return EMPTY_SUBSCRIPTION;\n }\n this.currentObservers = null;\n observers.push(subscriber);\n return new Subscription(() => {\n this.currentObservers = null;\n arrRemove(observers, subscriber);\n });\n }\n\n /** @internal */\n protected _checkFinalizedStatuses(subscriber: Subscriber) {\n const { hasError, thrownError, isStopped } = this;\n if (hasError) {\n subscriber.error(thrownError);\n } else if (isStopped) {\n subscriber.complete();\n }\n }\n\n /**\n * Creates a new Observable with this Subject as the source. You can do this\n * to create custom Observer-side logic of the Subject and conceal it from\n * code that uses the Observable.\n * @return {Observable} Observable that the Subject casts to\n */\n asObservable(): Observable {\n const observable: any = new Observable();\n observable.source = this;\n return observable;\n }\n}\n\n/**\n * @class AnonymousSubject\n */\nexport class AnonymousSubject extends Subject {\n constructor(\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n public destination?: Observer,\n source?: Observable\n ) {\n super();\n this.source = source;\n }\n\n next(value: T) {\n this.destination?.next?.(value);\n }\n\n error(err: any) {\n this.destination?.error?.(err);\n }\n\n complete() {\n this.destination?.complete?.();\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n return this.source?.subscribe(subscriber) ?? EMPTY_SUBSCRIPTION;\n }\n}\n", "import { TimestampProvider } from '../types';\n\ninterface DateTimestampProvider extends TimestampProvider {\n delegate: TimestampProvider | undefined;\n}\n\nexport const dateTimestampProvider: DateTimestampProvider = {\n now() {\n // Use the variable rather than `this` so that the function can be called\n // without being bound to the provider.\n return (dateTimestampProvider.delegate || Date).now();\n },\n delegate: undefined,\n};\n", "import { Subject } from './Subject';\nimport { TimestampProvider } from './types';\nimport { Subscriber } from './Subscriber';\nimport { Subscription } from './Subscription';\nimport { dateTimestampProvider } from './scheduler/dateTimestampProvider';\n\n/**\n * A variant of {@link Subject} that \"replays\" old values to new subscribers by emitting them when they first subscribe.\n *\n * `ReplaySubject` has an internal buffer that will store a specified number of values that it has observed. Like `Subject`,\n * `ReplaySubject` \"observes\" values by having them passed to its `next` method. When it observes a value, it will store that\n * value for a time determined by the configuration of the `ReplaySubject`, as passed to its constructor.\n *\n * When a new subscriber subscribes to the `ReplaySubject` instance, it will synchronously emit all values in its buffer in\n * a First-In-First-Out (FIFO) manner. The `ReplaySubject` will also complete, if it has observed completion; and it will\n * error if it has observed an error.\n *\n * There are two main configuration items to be concerned with:\n *\n * 1. `bufferSize` - This will determine how many items are stored in the buffer, defaults to infinite.\n * 2. `windowTime` - The amount of time to hold a value in the buffer before removing it from the buffer.\n *\n * Both configurations may exist simultaneously. So if you would like to buffer a maximum of 3 values, as long as the values\n * are less than 2 seconds old, you could do so with a `new ReplaySubject(3, 2000)`.\n *\n * ### Differences with BehaviorSubject\n *\n * `BehaviorSubject` is similar to `new ReplaySubject(1)`, with a couple of exceptions:\n *\n * 1. `BehaviorSubject` comes \"primed\" with a single value upon construction.\n * 2. `ReplaySubject` will replay values, even after observing an error, where `BehaviorSubject` will not.\n *\n * @see {@link Subject}\n * @see {@link BehaviorSubject}\n * @see {@link shareReplay}\n */\nexport class ReplaySubject extends Subject {\n private _buffer: (T | number)[] = [];\n private _infiniteTimeWindow = true;\n\n /**\n * @param bufferSize The size of the buffer to replay on subscription\n * @param windowTime The amount of time the buffered items will stay buffered\n * @param timestampProvider An object with a `now()` method that provides the current timestamp. This is used to\n * calculate the amount of time something has been buffered.\n */\n constructor(\n private _bufferSize = Infinity,\n private _windowTime = Infinity,\n private _timestampProvider: TimestampProvider = dateTimestampProvider\n ) {\n super();\n this._infiniteTimeWindow = _windowTime === Infinity;\n this._bufferSize = Math.max(1, _bufferSize);\n this._windowTime = Math.max(1, _windowTime);\n }\n\n next(value: T): void {\n const { isStopped, _buffer, _infiniteTimeWindow, _timestampProvider, _windowTime } = this;\n if (!isStopped) {\n _buffer.push(value);\n !_infiniteTimeWindow && _buffer.push(_timestampProvider.now() + _windowTime);\n }\n this._trimBuffer();\n super.next(value);\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n this._throwIfClosed();\n this._trimBuffer();\n\n const subscription = this._innerSubscribe(subscriber);\n\n const { _infiniteTimeWindow, _buffer } = this;\n // We use a copy here, so reentrant code does not mutate our array while we're\n // emitting it to a new subscriber.\n const copy = _buffer.slice();\n for (let i = 0; i < copy.length && !subscriber.closed; i += _infiniteTimeWindow ? 1 : 2) {\n subscriber.next(copy[i] as T);\n }\n\n this._checkFinalizedStatuses(subscriber);\n\n return subscription;\n }\n\n private _trimBuffer() {\n const { _bufferSize, _timestampProvider, _buffer, _infiniteTimeWindow } = this;\n // If we don't have an infinite buffer size, and we're over the length,\n // use splice to truncate the old buffer values off. Note that we have to\n // double the size for instances where we're not using an infinite time window\n // because we're storing the values and the timestamps in the same array.\n const adjustedBufferSize = (_infiniteTimeWindow ? 1 : 2) * _bufferSize;\n _bufferSize < Infinity && adjustedBufferSize < _buffer.length && _buffer.splice(0, _buffer.length - adjustedBufferSize);\n\n // Now, if we're not in an infinite time window, remove all values where the time is\n // older than what is allowed.\n if (!_infiniteTimeWindow) {\n const now = _timestampProvider.now();\n let last = 0;\n // Search the array for the first timestamp that isn't expired and\n // truncate the buffer up to that point.\n for (let i = 1; i < _buffer.length && (_buffer[i] as number) <= now; i += 2) {\n last = i;\n }\n last && _buffer.splice(0, last + 1);\n }\n }\n}\n", "import { Scheduler } from '../Scheduler';\nimport { Subscription } from '../Subscription';\nimport { SchedulerAction } from '../types';\n\n/**\n * A unit of work to be executed in a `scheduler`. An action is typically\n * created from within a {@link SchedulerLike} and an RxJS user does not need to concern\n * themselves about creating and manipulating an Action.\n *\n * ```ts\n * class Action extends Subscription {\n * new (scheduler: Scheduler, work: (state?: T) => void);\n * schedule(state?: T, delay: number = 0): Subscription;\n * }\n * ```\n *\n * @class Action\n */\nexport class Action extends Subscription {\n constructor(scheduler: Scheduler, work: (this: SchedulerAction, state?: T) => void) {\n super();\n }\n /**\n * Schedules this action on its parent {@link SchedulerLike} for execution. May be passed\n * some context object, `state`. May happen at some point in the future,\n * according to the `delay` parameter, if specified.\n * @param {T} [state] Some contextual data that the `work` function uses when\n * called by the Scheduler.\n * @param {number} [delay] Time to wait before executing the work, where the\n * time unit is implicit and defined by the Scheduler.\n * @return {void}\n */\n public schedule(state?: T, delay: number = 0): Subscription {\n return this;\n }\n}\n", "import type { TimerHandle } from './timerHandle';\ntype SetIntervalFunction = (handler: () => void, timeout?: number, ...args: any[]) => TimerHandle;\ntype ClearIntervalFunction = (handle: TimerHandle) => void;\n\ninterface IntervalProvider {\n setInterval: SetIntervalFunction;\n clearInterval: ClearIntervalFunction;\n delegate:\n | {\n setInterval: SetIntervalFunction;\n clearInterval: ClearIntervalFunction;\n }\n | undefined;\n}\n\nexport const intervalProvider: IntervalProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n setInterval(handler: () => void, timeout?: number, ...args) {\n const { delegate } = intervalProvider;\n if (delegate?.setInterval) {\n return delegate.setInterval(handler, timeout, ...args);\n }\n return setInterval(handler, timeout, ...args);\n },\n clearInterval(handle) {\n const { delegate } = intervalProvider;\n return (delegate?.clearInterval || clearInterval)(handle as any);\n },\n delegate: undefined,\n};\n", "import { Action } from './Action';\nimport { SchedulerAction } from '../types';\nimport { Subscription } from '../Subscription';\nimport { AsyncScheduler } from './AsyncScheduler';\nimport { intervalProvider } from './intervalProvider';\nimport { arrRemove } from '../util/arrRemove';\nimport { TimerHandle } from './timerHandle';\n\nexport class AsyncAction extends Action {\n public id: TimerHandle | undefined;\n public state?: T;\n // @ts-ignore: Property has no initializer and is not definitely assigned\n public delay: number;\n protected pending: boolean = false;\n\n constructor(protected scheduler: AsyncScheduler, protected work: (this: SchedulerAction, state?: T) => void) {\n super(scheduler, work);\n }\n\n public schedule(state?: T, delay: number = 0): Subscription {\n if (this.closed) {\n return this;\n }\n\n // Always replace the current state with the new state.\n this.state = state;\n\n const id = this.id;\n const scheduler = this.scheduler;\n\n //\n // Important implementation note:\n //\n // Actions only execute once by default, unless rescheduled from within the\n // scheduled callback. This allows us to implement single and repeat\n // actions via the same code path, without adding API surface area, as well\n // as mimic traditional recursion but across asynchronous boundaries.\n //\n // However, JS runtimes and timers distinguish between intervals achieved by\n // serial `setTimeout` calls vs. a single `setInterval` call. An interval of\n // serial `setTimeout` calls can be individually delayed, which delays\n // scheduling the next `setTimeout`, and so on. `setInterval` attempts to\n // guarantee the interval callback will be invoked more precisely to the\n // interval period, regardless of load.\n //\n // Therefore, we use `setInterval` to schedule single and repeat actions.\n // If the action reschedules itself with the same delay, the interval is not\n // canceled. If the action doesn't reschedule, or reschedules with a\n // different delay, the interval will be canceled after scheduled callback\n // execution.\n //\n if (id != null) {\n this.id = this.recycleAsyncId(scheduler, id, delay);\n }\n\n // Set the pending flag indicating that this action has been scheduled, or\n // has recursively rescheduled itself.\n this.pending = true;\n\n this.delay = delay;\n // If this action has already an async Id, don't request a new one.\n this.id = this.id ?? this.requestAsyncId(scheduler, this.id, delay);\n\n return this;\n }\n\n protected requestAsyncId(scheduler: AsyncScheduler, _id?: TimerHandle, delay: number = 0): TimerHandle {\n return intervalProvider.setInterval(scheduler.flush.bind(scheduler, this), delay);\n }\n\n protected recycleAsyncId(_scheduler: AsyncScheduler, id?: TimerHandle, delay: number | null = 0): TimerHandle | undefined {\n // If this action is rescheduled with the same delay time, don't clear the interval id.\n if (delay != null && this.delay === delay && this.pending === false) {\n return id;\n }\n // Otherwise, if the action's delay time is different from the current delay,\n // or the action has been rescheduled before it's executed, clear the interval id\n if (id != null) {\n intervalProvider.clearInterval(id);\n }\n\n return undefined;\n }\n\n /**\n * Immediately executes this action and the `work` it contains.\n * @return {any}\n */\n public execute(state: T, delay: number): any {\n if (this.closed) {\n return new Error('executing a cancelled action');\n }\n\n this.pending = false;\n const error = this._execute(state, delay);\n if (error) {\n return error;\n } else if (this.pending === false && this.id != null) {\n // Dequeue if the action didn't reschedule itself. Don't call\n // unsubscribe(), because the action could reschedule later.\n // For example:\n // ```\n // scheduler.schedule(function doWork(counter) {\n // /* ... I'm a busy worker bee ... */\n // var originalAction = this;\n // /* wait 100ms before rescheduling the action */\n // setTimeout(function () {\n // originalAction.schedule(counter + 1);\n // }, 100);\n // }, 1000);\n // ```\n this.id = this.recycleAsyncId(this.scheduler, this.id, null);\n }\n }\n\n protected _execute(state: T, _delay: number): any {\n let errored: boolean = false;\n let errorValue: any;\n try {\n this.work(state);\n } catch (e) {\n errored = true;\n // HACK: Since code elsewhere is relying on the \"truthiness\" of the\n // return here, we can't have it return \"\" or 0 or false.\n // TODO: Clean this up when we refactor schedulers mid-version-8 or so.\n errorValue = e ? e : new Error('Scheduled action threw falsy error');\n }\n if (errored) {\n this.unsubscribe();\n return errorValue;\n }\n }\n\n unsubscribe() {\n if (!this.closed) {\n const { id, scheduler } = this;\n const { actions } = scheduler;\n\n this.work = this.state = this.scheduler = null!;\n this.pending = false;\n\n arrRemove(actions, this);\n if (id != null) {\n this.id = this.recycleAsyncId(scheduler, id, null);\n }\n\n this.delay = null!;\n super.unsubscribe();\n }\n }\n}\n", "import { Action } from './scheduler/Action';\nimport { Subscription } from './Subscription';\nimport { SchedulerLike, SchedulerAction } from './types';\nimport { dateTimestampProvider } from './scheduler/dateTimestampProvider';\n\n/**\n * An execution context and a data structure to order tasks and schedule their\n * execution. Provides a notion of (potentially virtual) time, through the\n * `now()` getter method.\n *\n * Each unit of work in a Scheduler is called an `Action`.\n *\n * ```ts\n * class Scheduler {\n * now(): number;\n * schedule(work, delay?, state?): Subscription;\n * }\n * ```\n *\n * @class Scheduler\n * @deprecated Scheduler is an internal implementation detail of RxJS, and\n * should not be used directly. Rather, create your own class and implement\n * {@link SchedulerLike}. Will be made internal in v8.\n */\nexport class Scheduler implements SchedulerLike {\n public static now: () => number = dateTimestampProvider.now;\n\n constructor(private schedulerActionCtor: typeof Action, now: () => number = Scheduler.now) {\n this.now = now;\n }\n\n /**\n * A getter method that returns a number representing the current time\n * (at the time this function was called) according to the scheduler's own\n * internal clock.\n * @return {number} A number that represents the current time. May or may not\n * have a relation to wall-clock time. May or may not refer to a time unit\n * (e.g. milliseconds).\n */\n public now: () => number;\n\n /**\n * Schedules a function, `work`, for execution. May happen at some point in\n * the future, according to the `delay` parameter, if specified. May be passed\n * some context object, `state`, which will be passed to the `work` function.\n *\n * The given arguments will be processed an stored as an Action object in a\n * queue of actions.\n *\n * @param {function(state: ?T): ?Subscription} work A function representing a\n * task, or some unit of work to be executed by the Scheduler.\n * @param {number} [delay] Time to wait before executing the work, where the\n * time unit is implicit and defined by the Scheduler itself.\n * @param {T} [state] Some contextual data that the `work` function uses when\n * called by the Scheduler.\n * @return {Subscription} A subscription in order to be able to unsubscribe\n * the scheduled work.\n */\n public schedule(work: (this: SchedulerAction, state?: T) => void, delay: number = 0, state?: T): Subscription {\n return new this.schedulerActionCtor(this, work).schedule(state, delay);\n }\n}\n", "import { Scheduler } from '../Scheduler';\nimport { Action } from './Action';\nimport { AsyncAction } from './AsyncAction';\nimport { TimerHandle } from './timerHandle';\n\nexport class AsyncScheduler extends Scheduler {\n public actions: Array> = [];\n /**\n * A flag to indicate whether the Scheduler is currently executing a batch of\n * queued actions.\n * @type {boolean}\n * @internal\n */\n public _active: boolean = false;\n /**\n * An internal ID used to track the latest asynchronous task such as those\n * coming from `setTimeout`, `setInterval`, `requestAnimationFrame`, and\n * others.\n * @type {any}\n * @internal\n */\n public _scheduled: TimerHandle | undefined;\n\n constructor(SchedulerAction: typeof Action, now: () => number = Scheduler.now) {\n super(SchedulerAction, now);\n }\n\n public flush(action: AsyncAction): void {\n const { actions } = this;\n\n if (this._active) {\n actions.push(action);\n return;\n }\n\n let error: any;\n this._active = true;\n\n do {\n if ((error = action.execute(action.state, action.delay))) {\n break;\n }\n } while ((action = actions.shift()!)); // exhaust the scheduler queue\n\n this._active = false;\n\n if (error) {\n while ((action = actions.shift()!)) {\n action.unsubscribe();\n }\n throw error;\n }\n }\n}\n", "import { AsyncAction } from './AsyncAction';\nimport { AsyncScheduler } from './AsyncScheduler';\n\n/**\n *\n * Async Scheduler\n *\n * Schedule task as if you used setTimeout(task, duration)\n *\n * `async` scheduler schedules tasks asynchronously, by putting them on the JavaScript\n * event loop queue. It is best used to delay tasks in time or to schedule tasks repeating\n * in intervals.\n *\n * If you just want to \"defer\" task, that is to perform it right after currently\n * executing synchronous code ends (commonly achieved by `setTimeout(deferredTask, 0)`),\n * better choice will be the {@link asapScheduler} scheduler.\n *\n * ## Examples\n * Use async scheduler to delay task\n * ```ts\n * import { asyncScheduler } from 'rxjs';\n *\n * const task = () => console.log('it works!');\n *\n * asyncScheduler.schedule(task, 2000);\n *\n * // After 2 seconds logs:\n * // \"it works!\"\n * ```\n *\n * Use async scheduler to repeat task in intervals\n * ```ts\n * import { asyncScheduler } from 'rxjs';\n *\n * function task(state) {\n * console.log(state);\n * this.schedule(state + 1, 1000); // `this` references currently executing Action,\n * // which we reschedule with new state and delay\n * }\n *\n * asyncScheduler.schedule(task, 3000, 0);\n *\n * // Logs:\n * // 0 after 3s\n * // 1 after 4s\n * // 2 after 5s\n * // 3 after 6s\n * ```\n */\n\nexport const asyncScheduler = new AsyncScheduler(AsyncAction);\n\n/**\n * @deprecated Renamed to {@link asyncScheduler}. Will be removed in v8.\n */\nexport const async = asyncScheduler;\n", "import { AsyncAction } from './AsyncAction';\nimport { AnimationFrameScheduler } from './AnimationFrameScheduler';\nimport { SchedulerAction } from '../types';\nimport { animationFrameProvider } from './animationFrameProvider';\nimport { TimerHandle } from './timerHandle';\n\nexport class AnimationFrameAction extends AsyncAction {\n constructor(protected scheduler: AnimationFrameScheduler, protected work: (this: SchedulerAction, state?: T) => void) {\n super(scheduler, work);\n }\n\n protected requestAsyncId(scheduler: AnimationFrameScheduler, id?: TimerHandle, delay: number = 0): TimerHandle {\n // If delay is greater than 0, request as an async action.\n if (delay !== null && delay > 0) {\n return super.requestAsyncId(scheduler, id, delay);\n }\n // Push the action to the end of the scheduler queue.\n scheduler.actions.push(this);\n // If an animation frame has already been requested, don't request another\n // one. If an animation frame hasn't been requested yet, request one. Return\n // the current animation frame request id.\n return scheduler._scheduled || (scheduler._scheduled = animationFrameProvider.requestAnimationFrame(() => scheduler.flush(undefined)));\n }\n\n protected recycleAsyncId(scheduler: AnimationFrameScheduler, id?: TimerHandle, delay: number = 0): TimerHandle | undefined {\n // If delay exists and is greater than 0, or if the delay is null (the\n // action wasn't rescheduled) but was originally scheduled as an async\n // action, then recycle as an async action.\n if (delay != null ? delay > 0 : this.delay > 0) {\n return super.recycleAsyncId(scheduler, id, delay);\n }\n // If the scheduler queue has no remaining actions with the same async id,\n // cancel the requested animation frame and set the scheduled flag to\n // undefined so the next AnimationFrameAction will request its own.\n const { actions } = scheduler;\n if (id != null && actions[actions.length - 1]?.id !== id) {\n animationFrameProvider.cancelAnimationFrame(id as number);\n scheduler._scheduled = undefined;\n }\n // Return undefined so the action knows to request a new async id if it's rescheduled.\n return undefined;\n }\n}\n", "import { AsyncAction } from './AsyncAction';\nimport { AsyncScheduler } from './AsyncScheduler';\n\nexport class AnimationFrameScheduler extends AsyncScheduler {\n public flush(action?: AsyncAction): void {\n this._active = true;\n // The async id that effects a call to flush is stored in _scheduled.\n // Before executing an action, it's necessary to check the action's async\n // id to determine whether it's supposed to be executed in the current\n // flush.\n // Previous implementations of this method used a count to determine this,\n // but that was unsound, as actions that are unsubscribed - i.e. cancelled -\n // are removed from the actions array and that can shift actions that are\n // scheduled to be executed in a subsequent flush into positions at which\n // they are executed within the current flush.\n const flushId = this._scheduled;\n this._scheduled = undefined;\n\n const { actions } = this;\n let error: any;\n action = action || actions.shift()!;\n\n do {\n if ((error = action.execute(action.state, action.delay))) {\n break;\n }\n } while ((action = actions[0]) && action.id === flushId && actions.shift());\n\n this._active = false;\n\n if (error) {\n while ((action = actions[0]) && action.id === flushId && actions.shift()) {\n action.unsubscribe();\n }\n throw error;\n }\n }\n}\n", "import { AnimationFrameAction } from './AnimationFrameAction';\nimport { AnimationFrameScheduler } from './AnimationFrameScheduler';\n\n/**\n *\n * Animation Frame Scheduler\n *\n * Perform task when `window.requestAnimationFrame` would fire\n *\n * When `animationFrame` scheduler is used with delay, it will fall back to {@link asyncScheduler} scheduler\n * behaviour.\n *\n * Without delay, `animationFrame` scheduler can be used to create smooth browser animations.\n * It makes sure scheduled task will happen just before next browser content repaint,\n * thus performing animations as efficiently as possible.\n *\n * ## Example\n * Schedule div height animation\n * ```ts\n * // html:
\n * import { animationFrameScheduler } from 'rxjs';\n *\n * const div = document.querySelector('div');\n *\n * animationFrameScheduler.schedule(function(height) {\n * div.style.height = height + \"px\";\n *\n * this.schedule(height + 1); // `this` references currently executing Action,\n * // which we reschedule with new state\n * }, 0, 0);\n *\n * // You will see a div element growing in height\n * ```\n */\n\nexport const animationFrameScheduler = new AnimationFrameScheduler(AnimationFrameAction);\n\n/**\n * @deprecated Renamed to {@link animationFrameScheduler}. Will be removed in v8.\n */\nexport const animationFrame = animationFrameScheduler;\n", "import { Observable } from '../Observable';\nimport { SchedulerLike } from '../types';\n\n/**\n * A simple Observable that emits no items to the Observer and immediately\n * emits a complete notification.\n *\n * Just emits 'complete', and nothing else.\n *\n * ![](empty.png)\n *\n * A simple Observable that only emits the complete notification. It can be used\n * for composing with other Observables, such as in a {@link mergeMap}.\n *\n * ## Examples\n *\n * Log complete notification\n *\n * ```ts\n * import { EMPTY } from 'rxjs';\n *\n * EMPTY.subscribe({\n * next: () => console.log('Next'),\n * complete: () => console.log('Complete!')\n * });\n *\n * // Outputs\n * // Complete!\n * ```\n *\n * Emit the number 7, then complete\n *\n * ```ts\n * import { EMPTY, startWith } from 'rxjs';\n *\n * const result = EMPTY.pipe(startWith(7));\n * result.subscribe(x => console.log(x));\n *\n * // Outputs\n * // 7\n * ```\n *\n * Map and flatten only odd numbers to the sequence `'a'`, `'b'`, `'c'`\n *\n * ```ts\n * import { interval, mergeMap, of, EMPTY } from 'rxjs';\n *\n * const interval$ = interval(1000);\n * const result = interval$.pipe(\n * mergeMap(x => x % 2 === 1 ? of('a', 'b', 'c') : EMPTY),\n * );\n * result.subscribe(x => console.log(x));\n *\n * // Results in the following to the console:\n * // x is equal to the count on the interval, e.g. (0, 1, 2, 3, ...)\n * // x will occur every 1000ms\n * // if x % 2 is equal to 1, print a, b, c (each on its own)\n * // if x % 2 is not equal to 1, nothing will be output\n * ```\n *\n * @see {@link Observable}\n * @see {@link NEVER}\n * @see {@link of}\n * @see {@link throwError}\n */\nexport const EMPTY = new Observable((subscriber) => subscriber.complete());\n\n/**\n * @param scheduler A {@link SchedulerLike} to use for scheduling\n * the emission of the complete notification.\n * @deprecated Replaced with the {@link EMPTY} constant or {@link scheduled} (e.g. `scheduled([], scheduler)`). Will be removed in v8.\n */\nexport function empty(scheduler?: SchedulerLike) {\n return scheduler ? emptyScheduled(scheduler) : EMPTY;\n}\n\nfunction emptyScheduled(scheduler: SchedulerLike) {\n return new Observable((subscriber) => scheduler.schedule(() => subscriber.complete()));\n}\n", "import { SchedulerLike } from '../types';\nimport { isFunction } from './isFunction';\n\nexport function isScheduler(value: any): value is SchedulerLike {\n return value && isFunction(value.schedule);\n}\n", "import { SchedulerLike } from '../types';\nimport { isFunction } from './isFunction';\nimport { isScheduler } from './isScheduler';\n\nfunction last(arr: T[]): T | undefined {\n return arr[arr.length - 1];\n}\n\nexport function popResultSelector(args: any[]): ((...args: unknown[]) => unknown) | undefined {\n return isFunction(last(args)) ? args.pop() : undefined;\n}\n\nexport function popScheduler(args: any[]): SchedulerLike | undefined {\n return isScheduler(last(args)) ? args.pop() : undefined;\n}\n\nexport function popNumber(args: any[], defaultValue: number): number {\n return typeof last(args) === 'number' ? args.pop()! : defaultValue;\n}\n", "export const isArrayLike = ((x: any): x is ArrayLike => x && typeof x.length === 'number' && typeof x !== 'function');", "import { isFunction } from \"./isFunction\";\n\n/**\n * Tests to see if the object is \"thennable\".\n * @param value the object to test\n */\nexport function isPromise(value: any): value is PromiseLike {\n return isFunction(value?.then);\n}\n", "import { InteropObservable } from '../types';\nimport { observable as Symbol_observable } from '../symbol/observable';\nimport { isFunction } from './isFunction';\n\n/** Identifies an input as being Observable (but not necessary an Rx Observable) */\nexport function isInteropObservable(input: any): input is InteropObservable {\n return isFunction(input[Symbol_observable]);\n}\n", "import { isFunction } from './isFunction';\n\nexport function isAsyncIterable(obj: any): obj is AsyncIterable {\n return Symbol.asyncIterator && isFunction(obj?.[Symbol.asyncIterator]);\n}\n", "/**\n * Creates the TypeError to throw if an invalid object is passed to `from` or `scheduled`.\n * @param input The object that was passed.\n */\nexport function createInvalidObservableTypeError(input: any) {\n // TODO: We should create error codes that can be looked up, so this can be less verbose.\n return new TypeError(\n `You provided ${\n input !== null && typeof input === 'object' ? 'an invalid object' : `'${input}'`\n } where a stream was expected. You can provide an Observable, Promise, ReadableStream, Array, AsyncIterable, or Iterable.`\n );\n}\n", "export function getSymbolIterator(): symbol {\n if (typeof Symbol !== 'function' || !Symbol.iterator) {\n return '@@iterator' as any;\n }\n\n return Symbol.iterator;\n}\n\nexport const iterator = getSymbolIterator();\n", "import { iterator as Symbol_iterator } from '../symbol/iterator';\nimport { isFunction } from './isFunction';\n\n/** Identifies an input as being an Iterable */\nexport function isIterable(input: any): input is Iterable {\n return isFunction(input?.[Symbol_iterator]);\n}\n", "import { ReadableStreamLike } from '../types';\nimport { isFunction } from './isFunction';\n\nexport async function* readableStreamLikeToAsyncGenerator(readableStream: ReadableStreamLike): AsyncGenerator {\n const reader = readableStream.getReader();\n try {\n while (true) {\n const { value, done } = await reader.read();\n if (done) {\n return;\n }\n yield value!;\n }\n } finally {\n reader.releaseLock();\n }\n}\n\nexport function isReadableStreamLike(obj: any): obj is ReadableStreamLike {\n // We don't want to use instanceof checks because they would return\n // false for instances from another Realm, like an