-
Notifications
You must be signed in to change notification settings - Fork 457
/
Copy path6.1_chinese_dataset_uer_t5.py
221 lines (179 loc) · 9.06 KB
/
6.1_chinese_dataset_uer_t5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# In this scripts, we will teach you how to define a user defined
# TokenizerWrapper to do tasks that are not in the default configuration
# of
from openprompt.pipeline_base import PromptForGeneration
from openprompt.prompts.generation_verbalizer import GenerationVerbalizer
from tqdm import tqdm
from openprompt.data_utils import PROCESSORS
import torch
from openprompt.data_utils.utils import InputExample
import argparse
import numpy as np
from openprompt import PromptDataLoader
from openprompt.prompts import ManualVerbalizer
from openprompt.prompts import SoftTemplate
from openprompt import PromptForClassification
import time
import os
import re
from openprompt.utils.crossfit_metrics import evaluate as crossfit_evaluate
parser = argparse.ArgumentParser("")
parser.add_argument("--seed", type=int, default=144)
parser.add_argument("--project_root", default="/home/hushengding/OpenPrompt_CameraReady/OpenPrompt/", help="The project root in the file system, i.e. the absolute path of OpenPrompt")
parser.add_argument("--result_file", type=str, default="../results.txt")
parser.add_argument("--max_steps", default=5000, type=int)
parser.add_argument("--lr", type=float, default=1e-2)
parser.add_argument("--warmup_step_prompt", type=int, default=500)
parser.add_argument("--eval_every_steps", type=int, default=500)
args = parser.parse_args()
args.result_file = os.path.join(args.project_root, args.result_file)
# Different from the other scripts, here the combination of tokenizer and model
# is not in the default configurations of openprompt.
# So we load the tokenizer and model separately.
from transformers import BertTokenizer, MT5ForConditionalGeneration, Text2TextGenerationPipeline
tokenizer = BertTokenizer.from_pretrained("uer/t5-v1_1-base-chinese-cluecorpussmall")
model = MT5ForConditionalGeneration.from_pretrained("uer/t5-v1_1-base-chinese-cluecorpussmall")
text2text_generator = Text2TextGenerationPipeline(model, tokenizer)
generated_text = text2text_generator("中国的首都是extra0京", max_length=50, do_sample=False)
print(generated_text)
# Then we slightly modify the Tokenizer wrapper to change the mask token to the BertTokenizer's mask token.
from openprompt.plms.seq2seq import T5TokenizerWrapper
class T5BertTokenizerWrapper(T5TokenizerWrapper):
def mask_token(self, id):
return f"extra{id}"
def mask_token_ids(self, id):
return self.tokenizer.convert_tokens_to_ids(f"extra{id}")
tokenizer.eos_token = "extra1"
tokenizer_wrapper = T5BertTokenizerWrapper(max_seq_length=128, tokenizer=tokenizer, decoder_max_length=5, decode_from_pad=False)
## Load a Chinese Classical Poetry Retrieval Dataset-Multiple Choice
## (http://cuge.baai.ac.cn/#/dataset?id=1&name=CCPM)
## In this task we choose the poetry that is best descripted by the translation.
## Please register in the web and download the dataset then put it into the <path> directory.
## A correct download have the follow file in "../CCPM"
## CCPM
## -- eval.py
## -- README-EN.md
## -- README-ZH.md
## -- test_public.jsonl
## -- train.jsonl
## -- valid.jsonl
##
# The final performance of this tasks using this scripts ~ 0.83, which can be better
# if we use better model such as CPM-2 etc.
def load_local_dataset(path="../CCPM/", split="train"):
import json
with open(f"{path}/{split}.jsonl", "r") as fin:
L = fin.readlines()
data =[]
for json_str in L:
result = json.loads(json_str)
# from IPython import embed; embed()
for idx, choice in enumerate(result['choices']):
result[f'choice{idx}'] = choice
result.pop("choices")
data.append(InputExample(meta=result, label=int(result['answer'])))
return data
dataset = {}
dataset['train'] = load_local_dataset(split="train")
dataset['val'] = load_local_dataset(split="valid")
from openprompt.prompts import ManualTemplate
mytemplate = ManualTemplate(tokenizer=tokenizer, text="""一:{"meta":"choice0"}; 二: {"meta":"choice1"}; 三: {"meta":"choice2"}; 四:{"meta":"choice3"}。哪一句表达了下面的意思: {"meta":"translation", "shortenable":True, "post_processing": lambda x:x.strip('。')}?第{"mask"}句。 """)
myverbalizer = GenerationVerbalizer(tokenizer, label_words={0:"一", 1:"二", 2: "三", 3:"四"}, is_rule=False)
train_dataloader = PromptDataLoader(dataset=dataset["train"], template=mytemplate, verbalizer=myverbalizer, # be sure to add verbalizer
tokenizer_wrapper=tokenizer_wrapper,
batch_size=16,shuffle=True, teacher_forcing=True, predict_eos_token=True,
truncate_method="tail")
validation_dataloader = PromptDataLoader(dataset=dataset["val"], template=mytemplate, verbalizer=myverbalizer, tokenizer=tokenizer,
tokenizer_wrapper=tokenizer_wrapper,
batch_size=16,shuffle=False, teacher_forcing=False, predict_eos_token=False, # predict_eos_token=True or False are both ok
truncate_method="tail")
# visualize some encoded data
print(tokenizer.decode(next(iter(train_dataloader))['input_ids'][0]))
print(tokenizer.decode(next(iter(train_dataloader))['decoder_input_ids'][0]))
## Below is the same precedure as the other scripts.
use_cuda = True
prompt_model = PromptForGeneration(plm=model,template=mytemplate, freeze_plm=False, plm_eval_mode=False)
if use_cuda:
prompt_model= prompt_model.cuda()
print("truncate rate: {}".format(train_dataloader.tokenizer_wrapper.truncate_rate), flush=True)
generation_arguments = {
"max_length": 2,
}
def evaluate(prompt_model, dataloader):
predictions = []
ground_truths = []
for step, inputs in enumerate(dataloader):
if use_cuda:
inputs = inputs.cuda()
_, output_sentence = prompt_model.generate(inputs, **generation_arguments, verbose=False)
predictions.extend(output_sentence)
ground_truths.extend(inputs['tgt_text'])
assert len(predictions)==len(ground_truths), (len(predictions), len(ground_truths))
predictions = [prediction.strip() for prediction in predictions]
ground_truths = [ground_truth.strip() for ground_truth in ground_truths]
# shown one example
print(f"predictions {predictions[0]}, ground_truths {ground_truths[0]}")
score = sum([prediction[:len(ground_truth)]==ground_truth for prediction, ground_truth in zip(predictions, ground_truths)])/len(ground_truths)
return score
from transformers import AdamW, get_linear_schedule_with_warmup,get_constant_schedule_with_warmup # use AdamW is a standard practice for transformer
from transformers.optimization import Adafactor # use Adafactor is the default setting for T5
loss_func = torch.nn.CrossEntropyLoss()
tot_step = args.max_steps
# normally we freeze the model when using soft_template. However, we keep the option to tune plm
no_decay = ['bias', 'LayerNorm.weight'] # it's always good practice to set no decay to biase and LayerNorm parameters
optimizer_grouped_parameters1 = [
{'params': [p for n, p in prompt_model.plm.named_parameters() if (not any(nd in n for nd in no_decay))], 'weight_decay': 0.01},
{'params': [p for n, p in prompt_model.plm.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer1 = AdamW(optimizer_grouped_parameters1, lr=args.lr)
scheduler1 = get_linear_schedule_with_warmup(
optimizer1,
num_warmup_steps=500, num_training_steps=tot_step)
tot_loss = 0
log_loss = 0
best_val_acc = 0
glb_step = 0
actual_step = 0
leave_training = False
gradient_accumulation_steps = 1
acc_traces = []
tot_train_time = 0
pbar_update_freq = 50
prompt_model.train()
pbar = tqdm(total=tot_step, desc="Train")
for epoch in range(1000000):
for step, inputs in enumerate(train_dataloader):
if use_cuda:
inputs = inputs.cuda()
tot_train_time -= time.time()
loss = prompt_model(inputs)
loss.backward()
tot_loss += loss.item()
actual_step += 1
if actual_step % gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(prompt_model.parameters(), 1.0)
glb_step += 1
if glb_step % pbar_update_freq == 0:
aveloss = (tot_loss - log_loss)/pbar_update_freq
pbar.update(pbar_update_freq)
pbar.set_postfix({'loss': aveloss, "epoch": epoch})
log_loss = tot_loss
if optimizer1 is not None:
optimizer1.step()
optimizer1.zero_grad()
if scheduler1 is not None:
scheduler1.step()
tot_train_time += time.time()
if actual_step % gradient_accumulation_steps == 0 and glb_step >0 and glb_step % args.eval_every_steps == 0:
val_acc = evaluate(prompt_model, validation_dataloader)
if val_acc >= best_val_acc:
# torch.save(prompt_model.state_dict(),f"{args.project_root}/../ckpts/{this_run_unicode}.ckpt")
best_val_acc = val_acc
acc_traces.append(val_acc)
print("Glb_step {}, val_acc {}, average time {}".format(glb_step, val_acc, tot_train_time/actual_step ), flush=True)
prompt_model.train()
if glb_step > args.max_steps:
leave_training = True
break
if leave_training:
break