-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathvisda-train-config.yaml
executable file
·37 lines (31 loc) · 1.33 KB
/
visda-train-config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
data:
dataset:
name: visda2017 # choices are ['office', 'officehome', 'caltech-imagenet', 'visda2017']
root_path: data/visda2017 # /path/to/dataset/root
source: 0 # source domain index
target: 1 # target domain index
n_share: 6 # number of classes to be shared
n_source_private: 3 # number of classes in source private domain
n_total: 12 # number of classes in total
dataloader:
class_balance: true #
data_workers: 3 # how many workers to use for train dataloaders
batch_size: 36 # batch_size for source domain and target domain respectively
model:
base_model: resnet50 # choices=['resnet50', 'vgg16']
pretrained_model: /workspace/fubo/resnet50.pth # /path/to/pretrained/model
train:
min_step: 30000 # minimum steps to run. run epochs until it exceeds the minStep
lr: 0.001 # learning rate for new layers. learning rate for finetune is 1/10 of lr
weight_decay: 0.0005
momentum: 0.9
test:
test_interval: 500 # interval of two continuous test phase
test_only: False # test a given model and exit
resume_file: '' # model to test
w_0: -0.5 # hyper-parameter w_0
misc:
gpus: 1 # how many GPUs to be used, 0 indicates CPU only
log:
root_dir: log # the log directory (log directory will be {root_dir}/{method}/time/)
log_interval: 10 # steps to log scalars