-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathneuralef-mnist-cnngpkernels.py
227 lines (199 loc) · 8.56 KB
/
neuralef-mnist-cnngpkernels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import math
from functools import partial
import itertools
from timeit import default_timer as timer
from mpl_toolkits import mplot3d
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
plt.rcParams['font.family'] = 'Times New Roman'
plt.rcParams.update({'font.size': 16})
from matplotlib.colors import ListedColormap
import pandas as pd
import seaborn as sns
import random
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn import svm
# from sklearn.gaussian_process import GaussianProcessClassifier
# from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
from sklearn.linear_model import SGDClassifier
from utils import *
parser = argparse.ArgumentParser(description='Decompose the CNN-GP kernel on MNIST')
parser.add_argument('--data-path', type=str, default='./data')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('-b', '--batch-size', default=1000, type=int,
metavar='N', help='mini-batch size (default: 1000)')
parser.add_argument('--arch', default='convnet2', type=str)
parser.add_argument('--bhs-r', default=[16, 16, 16], type=int, nargs='+',
help='base hidden size for random NNs')
parser.add_argument('--w-var-r', default=2., type=float, help='w_var for random NNs')
parser.add_argument('--b-var-r', default=0.01, type=float, help='b_var for random NNs')
parser.add_argument('--bhs', default=[32 64 128], type=int, nargs='+',
help='base hidden size for eigenfuncs')
parser.add_argument('--k', default=10, type=int)
parser.add_argument('--bs', default=256, type=int)
parser.add_argument('--lr', default=1e-3, type=float)
parser.add_argument('--optimizer-type', default='Adam', type=str)
parser.add_argument('--num-iterations', default=20000, type=int)
parser.add_argument('--num-samples', default=2000, type=int)
parser.add_argument('--momentum', default=0.9, type=float)
parser.add_argument('--job-id', default='default', type=str)
class NeuralEigenFunctions(nn.Module):
def __init__(self, k, arch, bhs, input_size, output_size=1,
momentum=0.9, normalize_over=[0]):
super(NeuralEigenFunctions, self).__init__()
self.momentum = momentum
self.normalize_over = normalize_over
self.functions = nn.ModuleList()
for i in range(k):
function = ConvNet(arch, bhs, input_size, output_size)
self.functions.append(function)
self.register_buffer('eigennorm', torch.zeros(k))
self.register_buffer('num_calls', torch.Tensor([0]))
def forward(self, x):
ret_raw = torch.cat([f(x) for f in self.functions], 1)
if self.training:
norm_ = ret_raw.norm(dim=self.normalize_over) / math.sqrt(
np.prod([ret_raw.shape[dim] for dim in self.normalize_over]))
with torch.no_grad():
if self.num_calls == 0:
self.eigennorm.copy_(norm_.data)
else:
self.eigennorm.mul_(self.momentum).add_(
norm_.data, alpha = 1-self.momentum)
self.num_calls += 1
else:
norm_ = self.eigennorm
return ret_raw / norm_
def main():
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
device = torch.device('cuda')
else:
device = torch.device('cpu')
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
train_loader, test_loader = load_mnist(args)
X, Y = [], []
for x, y in train_loader:
X.append(x); Y.append(y)
X, Y = torch.cat(X).to(device), torch.cat(Y)
X_val, Y_val = [], []
for x, y in test_loader:
X_val.append(x); Y_val.append(y)
X_val, Y_val = torch.cat(X_val).to(device), torch.cat(Y_val)
# search for good hyperparameters for NyStrom method
for kernel in [partial(polynomial_kernel, 10, 0.001, 1), partial(rbf_kernel, 1, 100)]:
try:
with torch.no_grad():
_, eigenfuncs_nystrom, _ = nystrom(X.cpu()[np.random.choice(X.shape[0], 6000, replace=False)].contiguous().contiguous(), args.k, kernel)
X_projected_by_nystrom, X_val_projected_by_nystrom = [], []
with torch.cuda.amp.autocast():
for i in range(0, len(X), args.bs):
X_projected_by_nystrom.append(eigenfuncs_nystrom(X[i: min(len(X), i+args.bs)].cpu()))
for i in range(0, len(X_val), args.bs):
X_val_projected_by_nystrom.append(eigenfuncs_nystrom(X_val[i: min(len(X_val), i+args.bs)].cpu()))
X_projected_by_nystrom = torch.cat(X_projected_by_nystrom).float()
X_val_projected_by_nystrom = torch.cat(X_val_projected_by_nystrom).float()
clf = SGDClassifier(loss='log')
clf.fit(X_projected_by_nystrom, Y)
print("Training acc of the lr for data projected by nystrom: {}".format(clf.score(X_projected_by_nystrom, Y)))
print("Testing acc of the lr for data projected by nystrom: {}".format(clf.score(X_val_projected_by_nystrom, Y_val)))
except:
pass
# perform NeuralEF
random_model = ConvNet(args.arch, args.bhs_r, input_size=[1, 28, 28], output_size=1).to(device)
num_params = sum(p.numel() for p in random_model.parameters())
print("Number of parameters:", num_params)
random_model.eval()
samples = []
with torch.no_grad():
with torch.cuda.amp.autocast(False):
for _ in range(args.num_samples):
if _ % 50 == 0:
print("Have obtained {} samples of the ConvNet kernel".format(_))
init_NN(random_model, args.w_var_r, args.b_var_r)
samples.append(random_model(X).data.cpu())
samples = torch.cat(samples, -1).T
start = timer()
nef = NeuralEigenFunctions(args.k, args.arch, args.bhs, input_size=[1, 28, 28]).to(device)
if args.optimizer_type == 'Adam':
optimizer = torch.optim.Adam(nef.parameters(), lr=args.lr)
elif args.optimizer_type == 'RMSprop':
optimizer = torch.optim.RMSprop(nef.parameters(), lr=args.lr, momentum=args.momentum)
else:
optimizer = torch.optim.SGD(nef.parameters(), lr=args.lr, momentum=args.momentum)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.num_iterations)
eigenvalues_our = None
nef.train()
for ite in range(args.num_iterations):
idx = np.random.choice(X.shape[0], args.bs, replace=False)
samples_batch = samples[:, idx].to(device)
psis_X = nef(X[idx])
with torch.no_grad():
samples_batch_psis = samples_batch @ psis_X
psis_K_psis = samples_batch_psis.T @ samples_batch_psis / args.num_samples
mask = torch.eye(args.k, device=psis_X.device) - \
(psis_K_psis / psis_K_psis.diag()).tril(diagonal=-1).T
grad = samples_batch.T @ (samples_batch_psis @ mask / args.num_samples)
if eigenvalues_our is None:
eigenvalues_our = psis_K_psis.diag() / (args.bs**2)
else:
eigenvalues_our.mul_(0.9).add_(psis_K_psis.diag() / (args.bs**2), alpha = 0.1)
if ite % 50 == 0:
print(ite, grad.norm(dim=0))
optimizer.zero_grad()
psis_X.backward(-grad)
optimizer.step()
scheduler.step()
end = timer()
print("Our method consumes {}s".format(end - start))
print(eigenvalues_our)
# dimension reduction
nef.eval()
X_projected_by_our, X_val_projected_by_our = [], []
with torch.no_grad():
with torch.cuda.amp.autocast():
for i in range(0, len(X), args.bs):
X_projected_by_our.append(nef(X[i: min(len(X), i+args.bs)]).data.cpu())
for i in range(0, len(X_val), args.bs):
X_val_projected_by_our.append(nef(X_val[i: min(len(X_val), i+args.bs)]).data.cpu())
X_projected_by_our = torch.cat(X_projected_by_our).float()
X_val_projected_by_our = torch.cat(X_val_projected_by_our).float()
print(X_projected_by_our.shape, X_projected_by_our[: 5], X_val_projected_by_our.shape)
# visualization
idx = np.random.choice(X.shape[0], 1000, replace=False)
colors = [plt.cm.tab10(i) for i in range(10)]
cmap=matplotlib.colors.ListedColormap(colors)
figure = plt.figure(figsize=(5, 5))
ax = figure.add_subplot(111, projection='3d')
# ax.set_title("Projected by our")
ax.scatter3D(X_projected_by_our[idx, 0],
X_projected_by_our[idx, 1],
X_projected_by_our[idx, 2],
c=Y[idx], cmap=cmap, edgecolors='k')
ax.grid(True)
plt.setp( ax.get_xticklabels(), visible=False)
plt.setp( ax.get_yticklabels(), visible=False)
plt.setp( ax.get_zticklabels(), visible=False)
figure.tight_layout()
figure.savefig('mnist_plots/{}_3d.pdf'.format(args.job_id), format='pdf', dpi=1000, bbox_inches='tight')
clf = SGDClassifier(loss='log')
clf.fit(X_projected_by_our, Y)
print("Training acc of the lr: {}".format(clf.score(X_projected_by_our, Y)))
print("Testing acc of the lr: {}".format(clf.score(X_val_projected_by_our, Y_val)))
if __name__ == '__main__':
main()