forked from bipulshahi/codes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SMS_text_classification_RNN.py
129 lines (67 loc) · 2.24 KB
/
SMS_text_classification_RNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# coding: utf-8
# In[ ]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from keras.models import Model
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding
from keras.optimizers import RMSprop
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
from keras.utils import to_categorical
from keras.callbacks import EarlyStopping
get_ipython().magic('matplotlib inline')
# In[ ]:
df = pd.read_csv('../input/spam.csv',delimiter=',',encoding='latin-1')
df.head()
# In[ ]:
df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'],axis=1,inplace=True)
df.info()
# In[ ]:
sns.countplot(df.v1)
plt.xlabel('Label')
plt.title('Number of ham and spam messages')
# In[ ]:
X = df.v2
Y = df.v1
le = LabelEncoder()
Y = le.fit_transform(Y)
Y = Y.reshape(-1,1)
# In[ ]:
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.15)
# In[ ]:
max_words = 1000
max_len = 150
tok = Tokenizer(num_words=max_words)
tok.fit_on_texts(X_train)
sequences = tok.texts_to_sequences(X_train)
sequences_matrix = sequence.pad_sequences(sequences,maxlen=max_len)
# In[ ]:
def RNN():
inputs = Input(name='inputs',shape=[max_len])
layer = Embedding(max_words,50,input_length=max_len)(inputs)
layer = LSTM(64)(layer)
layer = Dense(256,name='FC1')(layer)
layer = Activation('relu')(layer)
layer = Dropout(0.5)(layer)
layer = Dense(1,name='out_layer')(layer)
layer = Activation('sigmoid')(layer)
model = Model(inputs=inputs,outputs=layer)
return model
# In[ ]:
model = RNN()
model.summary()
model.compile(loss='binary_crossentropy',optimizer=RMSprop(),metrics=['accuracy'])
# In[ ]:
model.fit(sequences_matrix,Y_train,batch_size=128,epochs=10,
validation_split=0.2,callbacks=[EarlyStopping(monitor='val_loss',min_delta=0.0001)])
# In[ ]:
test_sequences = tok.texts_to_sequences(X_test)
test_sequences_matrix = sequence.pad_sequences(test_sequences,maxlen=max_len)
# In[ ]:
accr = model.evaluate(test_sequences_matrix,Y_test)
# In[ ]:
print('Test set\n Loss: {:0.3f}\n Accuracy: {:0.3f}'.format(accr[0],accr[1]))