forked from AlexAichinger/We-Care
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nlp.py
171 lines (127 loc) · 5.98 KB
/
nlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
# Copyright 2016 Google, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This application demonstrates how to perform basic operations with the
Google Cloud Natural Language API
For more information, the documentation at
https://cloud.google.com/natural-language/docs.
"""
import argparse
from google.cloud import language
def sentiment_text(text):
"""Detects sentiment in the text."""
language_client = language.Client()
# Instantiates a plain text document.
document = language_client.document_from_text(text)
# Detects sentiment in the document. You can also analyze HTML with:
# document.doc_type == language.Document.HTML
sentiment = document.analyze_sentiment()
print('Score: {}'.format(sentiment.score))
print('Magnitude: {}'.format(sentiment.magnitude))
def sentiment_file(gcs_uri):
"""Detects sentiment in the file located in Google Cloud Storage."""
language_client = language.Client()
# Instantiates a plain text document.
document = language_client.document_from_url(gcs_uri)
# Detects sentiment in the document. You can also analyze HTML with:
# document.doc_type == language.Document.HTML
sentiment = document.analyze_sentiment()
print('Score: {}'.format(sentiment.score))
print('Magnitude: {}'.format(sentiment.magnitude))
def entities_text(text):
"""Detects entities in the text."""
language_client = language.Client()
# Instantiates a plain text document.
document = language_client.document_from_text(text)
# Detects entities in the document. You can also analyze HTML with:
# document.doc_type == language.Document.HTML
entities = document.analyze_entities()
for entity in entities:
print('=' * 20)
print('{:<16}: {}'.format('name', entity.name))
print('{:<16}: {}'.format('type', entity.entity_type))
print('{:<16}: {}'.format('wikipedia_url', entity.wikipedia_url))
print('{:<16}: {}'.format('metadata', entity.metadata))
print('{:<16}: {}'.format('salience', entity.salience))
def entities_file(gcs_uri):
"""Detects entities in the file located in Google Cloud Storage."""
language_client = language.Client()
# Instantiates a plain text document.
document = language_client.document_from_url(gcs_uri)
# Detects sentiment in the document. You can also analyze HTML with:
# document.doc_type == language.Document.HTML
entities = document.analyze_entities()
for entity in entities:
print('=' * 20)
print('{:<16}: {}'.format('name', entity.name))
print('{:<16}: {}'.format('type', entity.entity_type))
print('{:<16}: {}'.format('wikipedia_url', entity.wikipedia_url))
print('{:<16}: {}'.format('metadata', entity.metadata))
print('{:<16}: {}'.format('salience', entity.salience))
def syntax_text(text):
"""Detects syntax in the text."""
language_client = language.Client()
# Instantiates a plain text document.
document = language_client.document_from_text(text)
# Detects syntax in the document. You can also analyze HTML with:
# document.doc_type == language.Document.HTML
tokens = document.analyze_syntax()
for token in tokens:
print('{}: {}'.format(token.part_of_speech, token.text_content))
def syntax_file(gcs_uri):
"""Detects syntax in the file located in Google Cloud Storage."""
language_client = language.Client()
# Instantiates a plain text document.
document = language_client.document_from_url(gcs_uri)
# Detects syntax in the document. You can also analyze HTML with:
# document.doc_type == language.Document.HTML
tokens = document.analyze_syntax()
for token in tokens:
print('{}: {}'.format(token.part_of_speech, token.text_content))
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
subparsers = parser.add_subparsers(dest='command')
sentiment_text_parser = subparsers.add_parser(
'sentiment-text', help=sentiment_text.__doc__)
sentiment_text_parser.add_argument('text')
sentiment_file_parser = subparsers.add_parser(
'sentiment-file', help=sentiment_file.__doc__)
sentiment_file_parser.add_argument('gcs_uri')
entities_text_parser = subparsers.add_parser(
'entities-text', help=entities_text.__doc__)
entities_text_parser.add_argument('text')
entities_file_parser = subparsers.add_parser(
'entities-file', help=entities_file.__doc__)
entities_file_parser.add_argument('gcs_uri')
syntax_text_parser = subparsers.add_parser(
'syntax-text', help=syntax_text.__doc__)
syntax_text_parser.add_argument('text')
syntax_file_parser = subparsers.add_parser(
'syntax-file', help=syntax_file.__doc__)
syntax_file_parser.add_argument('gcs_uri')
args = parser.parse_args()
if args.command == 'sentiment-text':
sentiment_text(args.text)
elif args.command == 'sentiment-file':
sentiment_file(args.gcs_uri)
elif args.command == 'entities-text':
entities_text(args.text)
elif args.command == 'entities-file':
entities_file(args.gcs_uri)
elif args.command == 'syntax-text':
syntax_text(args.text)
elif args.command == 'syntax-file':
syntax_file(args.gcs_uri)