-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_xgb_normal.py
42 lines (27 loc) · 1.84 KB
/
run_xgb_normal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/usr/bin/env python
# Created by "Thieu" at 07:42, 02/10/2022 ----------%
# Email: nguyenthieu2102@gmail.com %
# Github: https://github.com/thieu1995 %
# --------------------------------------------------%
from xgboost import XGBClassifier
from src.utils.model_util import training_process
from src.utils.data_util import generate_data
from src.utils.data_util import features_as_count_vectors, features_as_TF_IDF_vectors
## {"train_x": train_x, "y_train": train_y, "valid_x": valid_x, "y_valid": valid_y, "encoder": encoder, "trainDF": trainDF}
df = generate_data()
## Features as Count Vectors
# X_train, X_valid = features_as_count_vectors(df["trainDF"], df["train_x"], df["valid_x"])
# accuracy = training_process(XGBClassifier(), X_train, df["y_train"], X_valid, df["y_valid"])
# print("NB, Count Vectors: ", accuracy)
## Features as Word Level TF IDF Vectors
# X_train, X_valid = features_as_TF_IDF_vectors(df["trainDF"], df["train_x"], df["valid_x"], kind="word")
# accuracy = training_process(XGBClassifier(), X_train, df["y_train"], X_valid, df["y_valid"])
# print("NB, WordLevel TF-IDF: ", accuracy)
## Features as Ngram Level TF IDF Vectors
# X_train, X_valid = features_as_TF_IDF_vectors(df["trainDF"], df["train_x"], df["valid_x"], kind="ngram")
# accuracy = training_process(XGBClassifier(), X_train, df["y_train"], X_valid, df["y_valid"])
# print("NB, N-Gram Vectors: ", accuracy)
## Features as Character Level TF IDF Vectors
X_train, X_valid = features_as_TF_IDF_vectors(df["trainDF"], df["train_x"], df["valid_x"], kind="char")
accuracy = training_process(XGBClassifier(), X_train, df["y_train"], X_valid, df["y_valid"])
print("NB, CharLevel Vectors: ", accuracy)