-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathtest_web_images.py
75 lines (60 loc) · 1.91 KB
/
test_web_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
Test the model
Usage:
test.py <ckpt> <dataset>
Options:
-h --help Show this help.
<dataset> Dataset folder
<ckpt> Path to the checkpoints to restore
"""
from docopt import docopt
import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import random
import pickle
import os
from model import ModelTrafficSign
from data_handler import get_data
def test_web_images(dataset, ckpt):
"""
Test images located into the "from_web" folder.
**input: **
*dataset: (String) Dataset folder to used
*ckpt: (String) [Optional] Path to the ckpt file to restore
"""
# Load name of id
with open("signnames.csv", "r") as f:
signnames = f.read()
id_to_name = { int(line.split(",")[0]):line.split(",")[1] for line in signnames.split("\n")[1:] if len(line) > 0}
images = []
# Read all image into the folder
for filename in os.listdir("from_web"):
img = Image.open(os.path.join("from_web", filename))
img = img.resize((32, 32))
img = np.array(img) / 255
images.append(img)
# Load the model
model = ModelTrafficSign("TrafficSign", output_folder=None)
model.load(ckpt)
# Get the prediction
predictions = model.predict(images)
# Plot the result
fig, axs = plt.subplots(5, 2, figsize=(10, 25))
axs = axs.ravel()
for i in range(10):
if i%2 == 0:
axs[i].axis('off')
axs[i].imshow(images[i // 2])
axs[i].set_title("Prediction: %s" % id_to_name[np.argmax(predictions[i // 2])])
else:
axs[i].bar(np.arange(43), predictions[i // 2])
axs[i].set_ylabel("Softmax")
axs[i].set_xlabel("Labels")
plt.show()
if __name__ == '__main__':
arguments = docopt(__doc__)
test_web_images(arguments["<dataset>"], arguments["<ckpt>"])