-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathutil.py
166 lines (138 loc) · 5.53 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# SIU KING WAI SM4701 Deepstory
import re
import copy
import spacy
import librosa
import numpy as np
from unidecode import unidecode
from modules.dctts import hp
from pydub import AudioSegment, effects
def quote_boundaries(doc):
for token in doc[:-1]:
# if token.text == "“" or token.text == "”":
# doc[token.i + 1].is_sent_start = True
if token.text == "“":
doc[token.i + 1].is_sent_start = True
return doc
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe(quote_boundaries, before="parser")
nlp_no_comma = copy.deepcopy(nlp)
sentencizer = nlp.create_pipe("sentencizer")
sentencizer.punct_chars.add(',')
sentencizer_no_comma = nlp_no_comma.create_pipe("sentencizer")
nlp.add_pipe(sentencizer, first=True)
nlp_no_comma.add_pipe(sentencizer_no_comma, first=True)
def normalize_text(text):
"""Normalize text so that some punctuations that indicate pauses will be replaced as commas"""
replace_list = [
[r'(\.\.\.)$|…$', '.'],
[r'\(|\)|:|;| “|(\s*-+\s+)|(\s+-+\s*)|\s*-{2,}\s*|(\.\.\.)|…|—', ', '],
[r'\s*,[^\w]*,\s*', ', '], # capture multiple commas
[r'\s*,\s*', ', '], # format commas
[r'\.,', '.'],
[r'[‘’“”]', ''] # strip quote
]
for regex, replacement in replace_list:
text = re.sub(regex, replacement, text)
text = unidecode(text) # Get rid of the accented characters
text = text.lower()
text = re.sub(f"[^{hp.vocab}]", " ", text)
text = re.sub(r' +', ' ', text).strip()
return text
def fix_text(text):
"""fix text for pasting content from the book"""
replace_list = [
[r'(\w)’(\w)', r"\1'\2"], # fix apostrophe for content from books
]
for regex, replacement in replace_list:
text = re.sub(regex, replacement, text)
text = re.sub(r' +', ' ', text)
return text
def trim_text(generated_text, max_sentences=0, script=False):
"""trim unfinished sentence generated by GPT2"""
# remove this replacement character for utf-8, a bug?
generated_text = generated_text.replace(b'\xef\xbf\xbd'.decode('utf-8'), '')
if script:
generated_text = generated_text.replace('\n', '')
text_list = re.findall(r'.*?[.!\?…—][’”]*', generated_text, re.DOTALL)
if script:
text_list = ['\n' + text if text[0].isupper() else text for text in text_list]
# if limit the max_sentence
if max_sentences:
# find all sentences and parsed as list and select the first nth items and join them back
return ''.join(text_list[:max_sentences])
else:
return ''.join(text_list)
# backup...
# # select until the last punctuation using regex, and create an nlp object for counting sentences
# text_list = [*nlp_no_comma(re.findall(r'.*[.!\?’”]', generated_text, re.DOTALL)[0]).sents]
# # figure out how to select max sentence(which structure)
# text_list = re.findall(r'.*?[.!\?]|.*\w+', generated_text, re.DOTALL)
# for i in reversed(range(1, len(text_list))):
# try:
# while not text_list[i][0].isalpha() and text_list[i][0] != '“' and text_list[i][0] != '‘' and text_list[i][0] != ' ':
# text_list[i - 1] = text_list[i - 1] + text_list[i][0]
# text_list[i] = text_list[i][1:]
# if not text_list:
# break
# except IndexError:
# print('ok')
# if not any(text_list[-1][-1] == x for x in ['.', '!', '?']):
# del text_list[-1]
# if max_sentences:
# text_list = [text.text for i, text in enumerate(text_list) if i < max_sentences]
# else:
# text_list = [text.text for text in text_list]
# return ' '.join(text_list)
def separate(text, n_gram, comma, max_len=30):
_nlp = nlp if comma else nlp_no_comma
lines = []
line = ''
counter = 0
for sent in _nlp(text).sents:
if sent.text:
if counter == 0:
line = sent.text
else:
line = f'{line} {sent.text}'
counter += 1
if counter == n_gram:
lines.append(_nlp(line))
line = ''
counter = 0
# for remaining sentences
if line:
lines.append(_nlp(line))
return lines
def get_duration(second):
return int(hp.sr * second)
def normalize_audio(wav):
# normalize the audio with pydub
audioseg = AudioSegment(wav.tobytes(), sample_width=2, frame_rate=hp.sr, channels=1)
# normalized = effects.normalize(audioseg, self.norm_factor)
normalized = audioseg.apply_gain(-30 - audioseg.dBFS)
wav = np.array(normalized.get_array_of_samples())
return wav
# from my audio processing project
def split_audio_to_list(source, preemph=True, preemphasis=0.8, min_diff=1500, min_size=get_duration(1), db=80):
if preemph:
source = np.append(source[0], source[1:] - preemphasis * source[:-1])
split_list = librosa.effects.split(source, top_db=db).tolist()
i = len(split_list) - 1
while i > 0:
if split_list[i][-1] - split_list[i][0] > min_size:
now = split_list[i][0]
prev = split_list[i - 1][1]
diff = now - prev
if diff < min_diff:
split_list[i - 1] = [split_list[i - 1][0], split_list.pop(i)[1]]
else:
split_list.pop(i)
i -= 1
# make sure nothing is trimmed away
split_list[0][0] = 0
split_list[-1][1] = len(source)
for i in reversed(range(len(split_list))):
if i != 0:
split_list[i][0] = split_list[i - 1][1]
return split_list