-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCF_JK_ST_conf.py
242 lines (168 loc) · 6.81 KB
/
CF_JK_ST_conf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import tempfile
from pycorr import TwoPointCounter
import numpy as np
import math
from pycorr import TwoPointCounter
import h5py
from tqdm import trange
from nbodykit.lab import *
from mpi4py import MPI
import time
import configparser
import argparse
def formatBcast(arr):
temp = []
for i in range(len(arr)):
temp.extend(arr[i])
return temp
def CountPairs(dset1,dset2,edges,weights1=None,weights2=None,nthreads=32):
#print('Computing counts')
D1D2 = TwoPointCounter('smu', edges, positions1=dset1.T,positions2=dset2.T,weights1=weights1,weights2=weights2,
engine='corrfunc', nthreads=nthreads)
return D1D2.wcounts
if __name__ == "__main__":
desc = "Analysis of the PS"
parser = argparse.ArgumentParser(description=desc)
h = 'conf file'
parser.add_argument('k', type=str, help=h)
ns=parser.parse_args()
config = ns.k
conf = configparser.ConfigParser()
conf.read(config)
data = (conf.get('Input','data'))
randoms = (conf.get('Input','randoms'))
output = conf.get('Output','output')
omega_m = float(conf.get('Input','omega_m'))
h = float(conf.get('Input','h'))
sigma8 = float(conf.get('Input','sigma8'))
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size_comms = comm.size
min_s = float(conf.get('Input','min_s'))
max_s = float(conf.get('Input','max_s'))
num_s = int(conf.get('Input','num_s'))
num_mu = int(conf.get('Input','num_mu'))
lab_ra1 = conf.get('Input','RA1')
lab_dec1 = conf.get('Input','DEC1')
lab_z1 = conf.get('Input','Z1')
lab_w1 = conf.get('Input','weights1')
lab_jk1 = conf.get('Input','reg_ind1')
lab_ra2 = conf.get('Input','RA2')
lab_dec2 = conf.get('Input','DEC2')
lab_z2 = conf.get('Input','Z2')
lab_w2 = conf.get('Input','weights2')
lab_jk2 = conf.get('Input','reg_ind2')
print('Setting up cosmology')
if (rank==0):
temp_time = time.time()
cosmo = cosmology.Cosmology(sigma8=sigma8,h=h).match(Omega0_m=omega_m)
os.environ['NUMEXPR_MAX_THREADS'] = '32'
nthreads=32
print('Reading datasets')
f = h5py.File(data, "r")
z=f[lab_z1][...]
ra = f[lab_ra1][...]
dec = f[lab_dec1][...]
w_fkp = f[lab_w1][...]
jk_ind = f[lab_jk1][...]
f.close()
print('Data length ', len(z))
f = h5py.File(randoms, "r")
z_r=f[lab_z2][...]
ra_r = f[lab_ra2][...]
dec_r = f[lab_dec2][...]
w_fkp_r = f[lab_w2][...]
jk_ind_r = f[lab_jk2][...]
f.close()
data_pos = transform.SkyToCartesian(ra, dec, z, cosmo=cosmo)
rand_pos = transform.SkyToCartesian(ra_r, dec_r, z_r, cosmo=cosmo)
edges = (np.linspace(min_s, max_s, num_s), np.linspace(0, 1., num_mu))
shp = [len(edges[0])-1,len(edges[1])-1]
jk_max = np.max(jk_ind)+1
corrs_jk=[]
delta_jk = jk_max/size_comms
print('Starting counts from ',math.ceil(delta_jk*rank),' to ',math.ceil((delta_jk)*(rank+1))-1)
DhDn_s = []
DhDh_s =[]
RhRn_s = []
RhRh_s = []
DnRh_s = []
DhRn_s = []
DhRh_s = []
for i in range(math.ceil(delta_jk*rank),math.ceil((delta_jk)*(rank+1))):
if(i>=jk_max):
continue
if(i<0):
continue
dt_wth_hole = data_pos[jk_ind!=i]
rt_wth_hole = rand_pos[jk_ind_r!=i]
dt_hole = data_pos[jk_ind==i]
rt_hole = rand_pos[jk_ind_r==i]
dw_hole = w_fkp[jk_ind==i]
rw_hole = w_fkp_r[jk_ind_r==i]
dw_wth_hole = w_fkp[jk_ind!=i]
rw_wth_hole = w_fkp_r[jk_ind_r!=i]
DhDn_s.append(CountPairs(dt_hole,dt_wth_hole,edges,dw_hole,dw_wth_hole,nthreads=nthreads))
DhDh_s.append(CountPairs(dt_hole,dt_hole,edges,dw_hole,dw_hole,nthreads=nthreads))
RhRn_s.append(CountPairs(rt_hole,rt_wth_hole,edges,rw_hole,rw_wth_hole,nthreads=nthreads))
RhRh_s.append(CountPairs(rt_hole,rt_hole,edges,rw_hole,rw_hole,nthreads=nthreads))
DnRh_s.append(CountPairs(dt_wth_hole,rt_hole,edges,dw_wth_hole,rw_hole,nthreads=nthreads))
DhRn_s.append(CountPairs(dt_hole,rt_wth_hole,edges,dw_hole,rw_wth_hole,nthreads=nthreads))
DhRh_s.append(CountPairs(dt_hole,rt_hole,edges,dw_hole,rw_hole,nthreads=nthreads))
print(i," done by ", rank)
DhDn_s = comm.gather(DhDn_s,root=0)
DhDh_s = comm.gather(DhDh_s,root=0)
RhRn_s = comm.gather(RhRn_s,root=0)
RhRh_s = comm.gather(RhRh_s,root=0)
DnRh_s = comm.gather(DnRh_s,root=0)
DhRn_s = comm.gather(DhRn_s,root=0)
DhRh_s = comm.gather(DhRh_s,root=0)
if(rank==0):
np.save(output+'_edges',edges)
DhDn_s = formatBcast(DhDn_s)
DhDh_s = formatBcast(DhDh_s)
RhRn_s = formatBcast(RhRn_s)
RhRh_s = formatBcast(RhRh_s)
DhRn_s = formatBcast(DhRn_s)
DhRh_s = formatBcast(DhRh_s)
DnRh_s = formatBcast(DnRh_s)
print('Computing DD,DR,RR ')
DD = np.zeros(np.shape(DhDh_s[0]))
DR = np.zeros(np.shape(DhDh_s[0]))
RR = np.zeros(np.shape(DhDh_s[0]))
DD = np.sum(DhDh_s+DhDn_s,axis=0)
RR = np.sum(RhRh_s+RhRn_s,axis=0)
DR = np.sum(DnRh_s+DhRh_s,axis=0)
print('Computing jackknife ')
for i in trange(jk_max):
dt_wth_hole = data_pos[jk_ind!=i]
rt_wth_hole = rand_pos[jk_ind_r!=i]
dt_hole = data_pos[jk_ind==i]
rt_hole = rand_pos[jk_ind_r==i]
dw_hole = w_fkp[jk_ind==i]
rw_hole = w_fkp_r[jk_ind_r==i]
dw_wth_hole = w_fkp[jk_ind!=i]
rw_wth_hole = w_fkp_r[jk_ind_r!=i]
DhDn=DhDn_s[i]
DhDh =DhDh_s[i]
DnRh=DnRh_s[i]
DhRn=DhRn_s[i]
DhRh = DhRh_s[i]
RhRn=RhRn_s[i]
RhRh=RhRh_s[i]
alpha = jk_max/(2+np.sqrt(2)*(jk_max-1))/4
norm_DD = (np.sum(dw_wth_hole))*(np.sum(dw_wth_hole)+1)+2*alpha* (np.sum(dw_hole)*np.sum(dw_wth_hole))
DD_jk = (DD-2*(1-alpha)*DhDn-DhDh)/norm_DD
norm_DR = (np.sum(rw_wth_hole))*(np.sum(dw_wth_hole)) +alpha* (np.sum(dw_hole)*np.sum(rw_wth_hole)+np.sum(rw_hole)*np.sum(dw_wth_hole))
DR_jk = (DR-(1-alpha)*(DnRh + DhRn)-DhRh)/norm_DR
norm_RR = (np.sum(rw_wth_hole))*(np.sum(rw_wth_hole)+1)+2*alpha* (np.sum(rw_hole)*np.sum(rw_wth_hole))
RR_jk = (RR-2*(1-alpha)*RhRn-RhRh)/norm_RR
cf = ((DD_jk-2*DR_jk+RR_jk)/RR_jk)
np.save(output+'_'+str(i),cf)
DD = DD /np.sum(w_fkp)/(np.sum(w_fkp)+1)
DR = DR /np.sum(w_fkp)/(np.sum(w_fkp_r))
RR = RR /np.sum(w_fkp_r)/(np.sum(w_fkp_r)+1)
cf = ((DD-2*DR+RR)/RR)
np.save(output+'_cf',cf)
print('Finished in ', time.time()-temp_time)