-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_ouda.py
executable file
·265 lines (241 loc) · 9.41 KB
/
train_ouda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import argparse
import os
from torch.backends import cudnn
from pprint import pprint
from sys import exit
import random
import warnings
import wandb
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader
from copy import deepcopy
from framework.handlers import get_model, get_db, get_adapt_method
from framework.domain_adaptation.config_ouda import cfg, cfg_from_file
from framework.dataset.weather_cityscapes_list.weather_cityscapes_sets import (
get_split as rain_split,
)
from framework.dataset.segmentation_db import Segmentation_db, base_transform
from framework.dataset.buffer_db import Buffer_db
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
warnings.filterwarnings("ignore")
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:2"
cudnn.benchmark = False
cudnn.enabled = True
cudnn.deterministic = True
# torch.set_deterministic(True)
getf = lambda x: next(iter(x))
def get_arguments():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(
description="Code for domain adaptation (DA) training"
)
parser.add_argument(
"--cfg",
type=str,
default=None,
help="optional config file",
)
return parser.parse_args()
def save_model(model, cfg, trg_set):
root = cfg.OTHERS.SNAPSHOT_DIR
set_ = cfg.SCHEME.SOURCE
if not os.path.exists(root):
os.makedirs(root)
fname = f"model_train_{set_}_after_{trg_set}.pth"
torch.save(model.state_dict(), os.path.join(root, fname))
def main():
# LOAD ARGS
args = get_arguments()
print("Called with args:")
print(args)
assert args.cfg is not None, "Missing cfg file"
cfg_from_file(args.cfg)
# auto-generate snapshot path if not specified
if cfg.OTHERS.SNAPSHOT_DIR == "":
os.makedirs(cfg.OTHERS.SNAPSHOT_DIR, exist_ok=True)
print("Using config:")
cfg.device = cfg.OTHERS.DEVICE
pprint(cfg)
wandb.init(
project="OUDA",
config=cfg,
)
# INIT
_init_fn = None
# fixing seeds
def _init_fn(seed):
def init_f(worker_id):
np.random.seed(seed + worker_id)
torch.manual_seed(seed + worker_id)
torch.cuda.manual_seed(seed + worker_id)
random.seed(seed + worker_id)
return init_f
_init_fn(cfg.TRAINING.RANDOM_SEED)(0)
datasets = get_db(cfg)
cfg.classnum_to_label = datasets["db_info"]["classnum_to_label"]
_init_fn(cfg.TRAINING.RANDOM_SEED)(0)
model = get_model(cfg, len(datasets["db_info"]["label"]))
cfg.NUM_CLASSES = len(datasets["db_info"]["label"])
print("Model has been Loaded")
# Perform source training
# creating source dataloader
db_mean = (
datasets["db_info"]["mean"]
if cfg.SCHEME.MEAN is None or cfg.SCHEME.MEAN == {}
else cfg.SCHEME.MEAN
)
db_std = (
datasets["db_info"]["std"]
if cfg.SCHEME.MEAN is None or cfg.SCHEME.MEAN == {}
else cfg.SCHEME.STD
)
transform = base_transform(np.array(db_mean), np.array(db_std))
prediction_saving_location = "no_save"
if cfg.METHOD.ADAPTATION.NAME != {}:
tmp = cfg.METHOD.ADAPTATION[cfg.METHOD.ADAPTATION.NAME].PREDICTION_SAVE
prediction_saving_location = tmp if tmp != {} else "no_save"
original_image = not (
cfg.SCHEME.ORIGINAL_RES == {}
or cfg.SCHEME.ORIGINAL_RES == cfg.SCHEME.RESOLUTION
)
ds_template = lambda x, dir_str: Segmentation_db(
cfg.SCHEME.PATH,
x,
dict(datasets["db_info"]["label2train"]),
cfg.SCHEME.RESOLUTION,
transforms=transform,
predictions_path=f"{prediction_saving_location}/" + dir_str,
original_label=original_image,
)
dl_template = lambda x, shuffle, dir_str: DataLoader(
ds_template(x, dir_str),
batch_size=cfg.TRAINING.BATCH_SIZE,
shuffle=shuffle,
num_workers=cfg.OTHERS.NUM_WORKERS,
worker_init_fn=_init_fn(cfg.TRAINING.RANDOM_SEED),
)
src_train = pd.concat(
[next(iter(db["train"].values())) for db in datasets["domains_src"]]
)
_init_fn(cfg.TRAINING.RANDOM_SEED)(0)
source_dataloader = {"src": dl_template(src_train, cfg.TRAINING.SHUFFLE, "source")}
source_val_dataloader = {}
validation_sets = {}
if "val" in datasets["domains_src"][0].keys():
source_val_dataloader = {
getf(dom["val"].keys()): dl_template(
getf(dom["val"].values()), False, "source_val"
)
for dom in datasets["domains_src"]
}
# Evaluation
validation_sets = source_val_dataloader
for trg_domain in datasets["domains_trg"]:
set_ = getf(trg_domain["train"].keys())
data_val = getf(trg_domain["val"].values())
val_loader = dl_template(data_val, False, f"trg_val_{set_}")
validation_sets[set_] = val_loader
# Testing
if cfg.METHOD.PRETRAIN.NAME == "EVALUATION":
from framework.domain_adaptation.methods.adaptation_model import evaluation
cfg_spec = cfg.METHOD.PRETRAIN["EVALUATION"]
evaluation_model = evaluation(model, cfg, cfg_spec)
if "PREDICTION_SAVE" in cfg_spec:
wandb.run.name = "PRED " + cfg.OTHERS.SNAPSHOT_DIR.split("/")[-1]
wandb.run.save()
for trg_domain in datasets["domains_trg"]:
set_ = getf(trg_domain["train"].keys())
_init_fn(cfg.TRAINING.RANDOM_SEED)(0)
data_tr = getf(trg_domain["train"].values())
trg_loader = dl_template(data_tr, False, f"trg_{set_}")
cfg_spec.set_ = set_
evaluation_model.update_cfg_spec(cfg_spec)
evaluation_model.run_predictions(trg_loader)
else:
wandb.run.name = "EVAL " + cfg.OTHERS.SNAPSHOT_DIR.split("/")[-1]
wandb.run.save()
log = evaluation_model.evaluate_all(validation_sets)
log.update(evaluation_model.test_on_samples(validation_sets))
wandb.log(log)
exit()
# Source Training
if cfg.METHOD.PRETRAIN.NAME == "SEGMENT":
from framework.domain_adaptation.methods.segmentation import (
train as train_segment,
)
train_segment(
model,
source_dataloader,
source_val_dataloader,
cfg,
cfg.METHOD.PRETRAIN.SEGMENT,
)
save_model(model, cfg, "src_training")
# UDA TRAINING
buff_size = cfg.TRAINING.REPLAY_BUFFER
if type(buff_size) == float:
src_sample = src_train.sample(
frac=buff_size, random_state=cfg.TRAINING.RANDOM_SEED
)
else:
src_sample = src_train.sample(
n=buff_size, random_state=cfg.TRAINING.RANDOM_SEED
)
update_freq = cfg.TRAINING.PERC_FILL_PER_DOMAIN
if buff_size == 0:
src_loader = []
elif isinstance(cfg.TRAINING.BUFFER_DYNAMIC, bool) and cfg.TRAINING.BUFFER_DYNAMIC:
src_loader = Buffer_db(
ds_template(src_sample, "source"), cfg.TRAINING.BATCH_SIZE
)
print(f"Buffer size: {src_loader.__sizeof__()/(1024**2)} MB")
else:
_init_fn(cfg.TRAINING.RANDOM_SEED)(0)
src_loader = dl_template(src_sample, True, "source")
# x = Buffer_db(ds_template(src_sample,'source' ), 4)
print("Starting UDA")
# Creating a dictionary with all validation
f_domain = False
cfg_spec = cfg.METHOD.ADAPTATION[cfg.METHOD.ADAPTATION.NAME]
da_model = get_adapt_method(cfg)(model, cfg, cfg_spec)
for order, trg_domain in enumerate(datasets["domains_trg"]):
set_ = getf(trg_domain["train"].keys())
_init_fn(cfg.TRAINING.RANDOM_SEED)(0)
data_tr = getf(trg_domain["train"].values())
if cfg.TRAINING.SHUFFLE == {} or cfg.TRAINING.SHUFFLE:
trg_loader = dl_template(data_tr, True, f"trg_{set_}")
else:
trg_loader = dl_template(data_tr, False, f"trg_{set_}")
validation_method = cfg.OTHERS.VALIDATION
if validation_method == "all":
val_set = validation_sets
elif validation_method == "single":
data_val = getf(trg_domain["val"].values())
val_set = dl_template(data_val, False, f"trg_val_{set_}")
elif validation_method == "none":
val_set = {}
else:
raise ValueError(
f"cfg.OTHERS.VALIDATION value error, it is given {cfg.OTHERS.VALIDATION}"
)
cfg_spec.set_ = set_
if cfg.SCHEME.DOMAIN_OPTIONS != {}:
if str(set_) in cfg.SCHEME.DOMAIN_OPTIONS:
for key, value in cfg.SCHEME.DOMAIN_OPTIONS[str(set_)].items():
print(f"Selecting values for domain {key}:{value}")
cfg_spec[key] = value
if cfg.SCHEME.ORDER_OPTIONS != {}:
if order in cfg.SCHEME.ORDER_OPTIONS:
for key, value in cfg.SCHEME.ORDER_OPTIONS[order].items():
print(f"Selecting values for domain {key}:{value}")
cfg_spec[key] = value
cfg_spec.SKIP_CALC |= f_domain
f_domain = True
da_model.update_cfg_spec(cfg_spec)
da_model.train(src_loader, trg_loader, val_set)
if __name__ == "__main__":
main()