-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdemo.py
93 lines (79 loc) · 3.93 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import argparse
import cv2
from imutils.video import FPS
from imutils.video import WebcamVideoStream
from demographics.age import AgeClassifier
from demographics.gender import GenderClassifier
from face_detectors import new_face_detector
from utils import enlarge_roi
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-src', '--source', dest='video_source', type=int,
help='Video file name.')
parser.add_argument('-fd', '--face-detector', dest='detector', type=str,
default='yolo', help='yolo, mtcnn or vj')
parser.add_argument('-thresh', '--threshold', dest='min_confidence', type=float,
default=0.5, help='Min confidence threshold.')
parser.add_argument('-codec', '--codec', dest='codec', type=str,
default='XVID', help='codec MJPG or XVID')
parser.add_argument('-save', '--save', dest='save', type=str,
default='output', help='Save video.')
parser.add_argument('-fps', '--fps', dest='fps', type=float,
default=30, help='FPS.')
args = parser.parse_args()
print("[INFO] starting webcam...")
fvs = WebcamVideoStream(args.video_source).start()
face_detector = new_face_detector(args.detector, args.min_confidence)
age_classifier = AgeClassifier()
gender_classifier = GenderClassifier()
# gender_classifier = DexGenderClassifier()
# time.sleep(1.0)
# Define the codec and create VideoWriter object
# fourcc = cv2.VideoWriter_fourcc(*args.codec)
# writer = None
# start the FPS timer
fps = FPS().start()
while True:
frame = fvs.read()
# check if the writer is None
# if writer is None:
# # store the image dimensions, initialize the video writer
# (h, w) = frame.shape[:2]
# writer = cv2.VideoWriter('{}_{}_{}.avi'.format(args.save, args.detector, int(time.time())), fourcc, args.fps, (w, h), True)
faces, ages, genders = face_detector.detect(frame), [], []
if len(faces) > 0:
ages = age_classifier.classify_all(frame, faces)
genders = gender_classifier.classify_all(frame, faces)
for face, age, gender in zip(faces, ages, genders):
print(face, age, gender)
x, y, w, h = enlarge_roi(frame, face)
# bbox face
# label = face_detector.name
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
age_score = age[1]
age_label = age[0]
if age_score > args.min_confidence:
label = "{}: {:.2f}%".format(age_label, age_score)
label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
cv2.rectangle(frame, (x, y), (x + label_size[0], y + label_size[1] + base_line), (0, 255, 0), cv2.FILLED)
cv2.putText(frame, label, (x, y + label_size[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
gender_label = gender[0]
gender_score = gender[1]
if gender_score > args.min_confidence:
label = "{}: {:.2f}%".format(gender_label, gender_score)
label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
cv2.rectangle(frame, (x + w - label_size[0] - base_line, y + h - label_size[1]), (x + w, y + h), (0, 255, 0), cv2.FILLED)
cv2.putText(frame, label, (x + w - label_size[0], y + h), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
# writer.write(frame)
cv2.imshow(face_detector.name, frame)
fps.update()
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# stop the timer and display FPS information
fps.stop()
print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
# do a bit of cleanup
cv2.destroyAllWindows()
# writer.release()
fvs.stop()