-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathroller-exllama.py
127 lines (99 loc) · 4.55 KB
/
roller-exllama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python3
from jinja2 import Template
from copy import copy
import json
prompt_template = """A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: BEGININPUT
BEGINCONTEXT
Transcription part {{ idx+1 }} of {{ len }}, start time {{ start|round|int }}s
ENDCONTEXT
The conversation continues, previous topics were: {{ context }}
{{ chunk }}
ENDINPUT
BEGININSTRUCTION
{{ instruction }}
ENDINSTRUCTION ASSISTANT:"""
instruction = """Continue the rolling transcription summary of "{{title}}". Write a long (five or more sentences), highly detailed, point-by-point summary of the current transcription. Expand on all major points."""
answer_prefixes = [
"In this part of the transcription, ",
"In this transcription part, ",
"In this part of the conversation, ",
"In the current transcription part, "
]
import sys
sys.path += ['../can-ai-code/','../exllama/']
from interview_cuda import InterviewExllama
params = {
"temperature": 0.7,
"presence_penalty": 1.176,
"top_p": 0.1,
"max_new_tokens": 2048
}
def main(prefix: str, model_name: str = "TheBloke/airoboros-l2-13b-gpt4-2.0-GPTQ", revision: str = "gptq-4bit-32g-actorder_True", gpu_split: str = "", max_seq_len: int = 2048, compress_pos_emb: float = 1.0):
model = InterviewExllama(model_name,{'max_seq_len':max_seq_len, 'compress_pos_emb':compress_pos_emb, 'revision': None if revision == '' else revision}, gpu_split=gpu_split if gpu_split else None)
model.load()
the_template = Template(prompt_template)
split_segments = json.load(open(prefix+'.chunk.json'))
info = json.load(open(prefix+'.info.json'))
speaker_map = {}
for chunk in split_segments:
do_find_speakers = False
for speaker in chunk['speakers']:
if speaker_map.get(speaker, None) is None:
speaker_map[speaker] = '??'
do_find_speakers = True
if do_find_speakers:
desc = info['description']
if len(desc) > 500: desc = desc[0:500]
speaker_prompts = f"Title: {info['title']}\nDescription: {desc}\nTranscript:\n---\n{chunk['text']}\n---\n"
speaker_prompts += f"Identify the names of each SPEAKER from the {info['title']} transcript above\n"
answer, model_info = model.generate(speaker_prompts, params)
print(answer)
for line in answer.strip().split('\n'):
for speaker, name in speaker_map.items():
if name == '??' and (speaker in line):
found_name = line.split(speaker)[1]
if found_name[0] == ':': found_name = found_name[1:]
speaker_map[speaker] = found_name.strip()
for speaker, name in speaker_map.items():
if name == '??':
print('Failed to identify', speaker)
exit(1)
else:
print(speaker,'=>',name)
context = f"""Video Title: "{info['title']}"
Video Description: "{info['description'][:512]}"
"""
f = open(prefix+'.summary.json', 'w')
p = open(prefix+'.prompts.json', 'w')
idx = 0
for chunk in split_segments:
dur = chunk['end'] - chunk['start']
print(f"{idx}: {dur}s {len(chunk['text'])}")
text = chunk['text']
for speaker, name in speaker_map.items():
text = text.replace(speaker+':', name+':')
prompt = the_template.render(chunk=text, start=chunk['start'], end=chunk['end'],
instruction=instruction,
idx=idx, len=len(split_segments), context=context, title=info['title'])
summary, model_info = model.generate(prompt, params)
topic_prompts = f"Summary: {summary}\n\nWhat were the 3 major topics covered by this summary?\nTopics:"
context, model_info = model.generate(topic_prompts, params)
section = {
'start': chunk['start'],
'end': chunk['end'],
'summary': summary,
'context': context
}
print('>> TOPICS <<')
print(context)
print('## SUMMARY ##')
print(summary)
print()
f.write(json.dumps(section)+'\n')
f.flush()
p.write(json.dumps({'prompt': prompt, 'answer': summary})+'\n')
p.flush()
idx = idx + 1
if __name__ == "__main__":
import fire
fire.Fire(main)