forked from AstraZeneca-NGS/VarDict
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvcf2txt.pl
611 lines (549 loc) · 29.5 KB
/
vcf2txt.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
#!/usr/bin/env perl
use Getopt::Std;
use warnings;
use strict;
our ($opt_F, $opt_R, $opt_s, $opt_r, $opt_n, $opt_N, $opt_H, $opt_q, $opt_p, $opt_b, $opt_f, $opt_c, $opt_u, $opt_D, $opt_Q, $opt_P, $opt_M, $opt_o, $opt_V, $opt_C, $opt_G, $opt_A, $opt_g, $opt_a, $opt_L);
getopts('suHabgLR:F:f:n:r:p:q:c:D:P:Q:M:o:V:C:G:A:') || USAGE();
my %AA_code = (
"ALA" => "A", "ILE" => "I", "LEU" => "L", "VAL" => "V",
"PHE" => "F", "TRP" => "W", "TYR" => "Y", "ASN" => "N",
"CYS" => "C", "GLN" => "Q", "MET" => "M", "SER" => "S",
"THR" => "T", "ASP" => "D", "GLU" => "E", "ARG" => "R",
"HIS" => "H", "LYS" => "K", "GLY" => "G", "PRO" => "P", "TER" => "*"
);
USAGE() if ( $opt_H );
my $FRACTION = $opt_r ? $opt_r : 0.4;
my $MAXRATIO = $opt_R ? $opt_R : 1.0;
my $CNT = $opt_n ? $opt_n : 10;
my $AVEFREQ = $opt_F ? $opt_F : 0.15;
my $MINPMEAN = $opt_p ? $opt_p : 5;
my $MINQMEAN = $opt_q ? $opt_q : 25;
my $FILPMEAN = $opt_P ? $opt_P : 0; # will be filtered on the first place
my $FILQMEAN = $opt_Q ? $opt_Q : 0; # will be filtered on the first place
my $FILDEPTH = $opt_D ? $opt_D : 0; # will be filtered on the first place
my $MINFREQ = $opt_f ? $opt_f : 0.02;
my $MINMQ = $opt_M ? $opt_M : 10;
my $MINVD = $opt_V ? $opt_V : 2; # minimum variant depth
my $MAF = $opt_G ? $opt_G : 0.0025;
my $SN = $opt_o ? $opt_o : 1.5;
my $PRINTLOF = $opt_L;
my @controls = $opt_c ? split(/:/, $opt_c) : ();
my %controls = map { ($_, 1); } @controls;
my %MultiMaf;
$opt_A = defined($opt_A) ? $opt_A : "/ngs/reference_data/genomes/Hsapiens/hg19/variation/dbSNP_multi_mafs_latest.txt";
setupMultiMaf($opt_A) if ( -e $opt_A );
# SBF: Strand Bias Fisher Exact test
my @columns = qw(GENE CDS AA CNT END DP AF BIAS PMEAN PSTD QUAL QSTD SBF CAF VD RD CLNSIG GENEINFO ODDRATIO HIAF MQ SN ADJAF NM SHIFT3 MSI dbSNPBuildID GT DUPRATE SPLITREAD SPANPAIR);
my @ampcols = ();
my @paircols = ();
my @appcols = $opt_C ? split(/:/, $opt_C) : ();
push(@columns, @appcols) if ($opt_C);
my %sample;
my %var;
my %CONTROL;
my $files_num = @ARGV;
print STDERR "First round, reading $files_num files, collecting statistics...\n";
my $i = 0;
foreach my $vcf (@ARGV) {
$i += 1;
print STDERR "$i/$files_num $vcf\n";
$vcf =~ /gz$/ ? open (VCF, "-|", "gunzip -c " . $vcf ) : open( VCF, $vcf );
while( <VCF> ) {
next if ( /^#/ );
chomp;
my @a = split(/\t/);
next unless( $a[6] eq "PASS" );
$a[7] .= ";";
my %d;
while( $a[7] =~ /([^=;]+)=([^=]+?);/g ) {
$d{ $1 } = $2;
}
@ampcols = qw(GDAMP TLAMP NCAMP AMPFLAG) if ( $d{GDAMP} && $d{TLAMP} );
my $d_ref = extractFORMATdata($a[8], $a[9], $a[10], \%d);
@paircols = qw(TYPE STATUS SSF SOR M_DP M_AF M_VD M_RD M_BIAS M_PMEAN M_PSTD M_QUAL M_QSTD M_HIAF M_MQ M_SN M_ADJAF M_NM M_GT M_DUPRATE M_SPLITREAD M_SPANPAIR) if ( $a[10] );
my $vark = join(":", @a[0,1,3,4]); # Chr Pos Ref Alt
next if !isPassingHardFilters ( $FILDEPTH, $FILPMEAN, $FILQMEAN, $d_ref->{ DP }, $d_ref->{ PMEAN }, $d_ref->{ QUAL } );
my ($pmean, $qmean) = ($d_ref->{ PMEAN }, $d_ref->{ QUAL });
my ($m_pmean, $m_qmean) = ($d_ref->{ M_PMEAN }, $d_ref->{ M_QUAL });
my $pass = "TRUE";
my $mpass = "TRUE";
#$pass = "FALSE" unless ( $d_ref->{PSTD} > 0 );
$pass = "FALSE" if ( $qmean && $qmean < $MINQMEAN );
$mpass = "FALSE" if ( $m_qmean && $m_qmean < $MINQMEAN );
$pass = "FALSE" if ( $pmean && $pmean < $MINPMEAN );
$mpass = "FALSE" if ( $m_pmean && $m_pmean < $MINPMEAN );
$pass = "FALSE" if ( !$d_ref->{AF} || $d_ref->{AF} < $MINFREQ );
$mpass = "FALSE" if ( !$d_ref->{M_AF} || $d_ref->{M_AF} < $MINFREQ );
$pass = "FALSE" if ( $d_ref->{MQ} && $d_ref->{MQ} < $MINMQ && $d_ref->{AF} < 0.5 ); # Keep low mapping quality but high allele frequency variants
$mpass = "FALSE" if ( $d_ref->{M_MQ} && $d_ref->{M_MQ} < $MINMQ && $d_ref->{M_AF} < 0.5 ); # Keep low mapping quality but high allele frequency variants
$pass = "FALSE" if ( $d_ref->{SN} && $d_ref->{SN} < $SN );
$mpass = "FALSE" if ( $d_ref->{M_SN} && $d_ref->{M_SN} < $SN );
$pass = "FALSE" if ( !$d_ref->{VD} || $d_ref->{VD} < $MINVD );
$mpass = "FALSE" if ( !$d_ref->{M_VD} || $d_ref->{M_VD} < $MINVD );
if ( $d_ref->{ SAMPLE } && $controls{ $d_ref->{ SAMPLE } } ) {
my $clncheck = checkCLNSIG($d_ref->{CLNSIG} );
my $class = $a[2] =~ /COSM/ ? "COSMIC" : ($a[2] =~ /^rs/ ? ($clncheck ? $clncheck : "dbSNP") : "Novel");
$CONTROL{ $vark } = 1 if ( $pass eq "TRUE" && $class eq "Novel"); # so that any novel variants showed up in control won't be filtered
}
unless( $opt_u && $d_ref->{ SAMPLE } =~ /Undetermined/i ) { # Undetermined won't count toward samples
$sample{ $d_ref->{ SAMPLE } } = 1;
push( @{ $var{ $vark } }, $d_ref->{ AF } ) if ( $pass eq "TRUE" || $mpass eq "TRUE" );
}
}
close( VCF );
}
my @amphdrs = @ampcols > 0 ? qw(GAmplicons TAmplicons NCAmplicons Ampflag) : ();
my @pairhdrs = @paircols > 0 ? qw(VType Status Paired-p_value Paired-OddRatio Matched_Depth Matched_AlleleFreq Matched_VD Matched_RD Matched_Bias Matched_Pmean Matched_Pstd Matched_Qual Matched_Qstd Matched_HIAF Matched_MQ Matched_SN Matched_AdjAF Matched_NM Matched_GT Matched_DupRate Matched_SplitReads Matched_SpanPairs) : ();
my @HDRS = (qw(Sample Chr Start ID Ref Alt Type Effect Functional_Class Codon_Change Amino_Acid_Change cDNA_Change Amino_Acid_Length Gene Transcript_bioType Gene_Coding Transcript Exon COSMIC_GENE COSMIC_CDS_Change COSMIC_AA_Change COSMIC_Cnt End Depth AlleleFreq Bias Pmean Pstd Qual Qstd SBF GMAF VD RD CLNSIG CLN_GENE ODDRATIO HIAF MQ SN AdjAF NM Shift3 MSI dbSNPBuildID GT DupRate SplitReads SpanPairs), @appcols, @amphdrs, @pairhdrs, qw(N_samples N_Var Pcnt_sample Ave_AF PASS Var_Type Var_Class));
if ($PRINTLOF) {
push(@HDRS, "LOF");
}
print join("\t", @HDRS), "\n";
my %HDRN;
for(my $i = 0; $i < @HDRS; $i++) {
$HDRN{ $HDRS[$i] } = $i;
}
my @samples = keys %sample;
my $sam_n = @samples + 0;
print STDERR "\n";
print STDERR "Second round, reading $files_num files, filtering variants...\n";
$i = 0;
foreach my $vcf (@ARGV) {
$i += 1;
print STDERR "$i/$files_num $vcf\n";
$vcf =~ /gz$/ ? open (VCF, "-|", "gunzip -c " . $vcf ) : open( VCF, $vcf );
while( <VCF> ) {
next if ( /^#/ );
chomp;
my @a = split(/\t/);
next unless( $a[6] eq "PASS" );
$a[7] .= ";";
my %d;
while( $a[7] =~ /([^=;]+)=([^=]+?);/g ) {
$d{ $1 } = $2;
}
$d{ GENE } && $d{ GENE } =~ s/_EN.*//;
@ampcols = qw(GDAMP TLAMP NCAMP AMPFLAG) if ( $d{GDAMP} && $d{TLAMP} );
my $d_ref = extractFORMATdata($a[8], $a[9], $a[10], \%d);
@paircols = qw(TYPE STATUS SSF SOR M_DP M_AF M_VD M_RD M_BIAS M_PMEAN M_PSTD M_QUAL M_QSTD M_HIAF M_MQ M_SN M_ADJAF M_NM M_GT M_DUPRATE M_SPLITREAD M_SPANPAIR) if ( $a[10] );
$d_ref->{ SBF } = $d_ref->{ SBF } < 0.0001 ? sprintf("%.1e", $d_ref->{ SBF }) : sprintf("%.4f", $d_ref->{ SBF }) if ( $d_ref->{ SBF } );
$d_ref->{ ODDRATIO } = sprintf("%.3f", $d_ref->{ ODDRATIO }) if ( $d_ref->{ ODDRATIO } );
my @effs = ();
if ( $d_ref->{ EFF } ) {
@effs = split(/,/, $d_ref->{ EFF });
} elsif ( $d_ref->{ ANN } ) {
my @anns = split(/,/, $d_ref->{ ANN });
foreach my $ann (@anns) {
my ($allele, $ann, $impact, $gname, $gid, $ftype, $fid, $biotype, $rank, $hgvsc, $hgvsp, $cdnap, $cdsp, $protp, $dist) = split(/\|/, $ann);
my @ta = split(/&/, $ann);
$ann = $ta[0];
$protp = $1 if ( $protp =~ /\d+\/(\d+)/ );
#my @alts = split(/,/, $a[4]);
push(@effs, "$ann($impact|$ann|$hgvsc|$hgvsp/$hgvsc|$protp|$gname|$biotype|$ftype|$fid|$rank|1)");
}
} else {
@effs = (" (||||||||||1)");
}
my $vark = join(":", @a[0, 1, 3, 4]); # Chr Pos Ref Alt
next if !isPassingHardFilters ( $FILDEPTH, $FILPMEAN, $FILQMEAN, $d_ref->{ DP }, $d_ref->{ PMEAN }, $d_ref->{ QUAL } );
my ($pmean, $qmean) = ($d_ref->{ PMEAN }, $d_ref->{ QUAL });
my ($m_pmean, $m_qmean) = ($d_ref->{ M_PMEAN }, $d_ref->{ M_QUAL });
my @alts = split(/,/, $a[4]);
my @d1 = ();
my @d2 = (); # for inconsistent COSMIC annot
for(my $i = 0; $i < @effs; $i++) {
my $eff = $effs[$i];
$eff =~ s/\)$//;
my @e = split(/\|/, $eff, -1);
my ($type, $effect) = split(/\(/, $e[0]);
my @tmp = map { defined($d_ref->{ $_ }) ? $d_ref->{ $_ } : ""; } (@columns, @ampcols, @paircols);
my ($aachg, $cdnachg) = $e[3] ? split("/", $e[3]) : ("", "");
($aachg, $cdnachg) = ("", $e[3]) if ( $e[3] =~ /^[cn]/ );
if ( $aachg && $aachg =~ /^p\./ && (! $opt_s )) {
$aachg =~ s/^p\.//;
if ( $aachg =~ /^([A-Z][a-z][a-z])(\d+)([A-Z][a-z][a-z])$/ ) {
$aachg = "$AA_code{ uc($1) }$2$AA_code{ uc($3) }";
print STDERR "$1 $3\n" unless( $AA_code{ uc($1) } && $AA_code{ uc($3) });
} elsif ( $aachg =~ /^([A-Z][a-z][a-z])(\d+)_([A-Z][a-z][a-z])(\d+)del$/ ) {
#$aachg = (length($a[3])-length($a[4]))/3 < $4 - $3 + 1 ? "$AA_code{$1}${2}del" : "$AA_code{$1}${2}_$AA_code{$3}${4}del";
$aachg = (length($a[3])-length($a[4]))/3 < $4 - $2 + 1 && $4 - $2 == 1 ? "$AA_code{uc($1)}${2}del" : "$AA_code{uc($1)}${2}_$AA_code{uc($3)}${4}del";
} elsif ( $aachg =~ /^([A-Z][a-z][a-z])(\d+)_([A-Z][a-z][a-z])(\d+)ins([A-Z].*)$/ ) {
my $ins = "";
for(my $i = 0; $i < length($5); $i += 3) {
$ins .= $AA_code{ uc(substr($5, $i, 3)) };
}
$aachg = "$AA_code{uc($1)}${2}_$AA_code{uc($3)}${4}ins$ins";
} elsif ( $aachg =~ /^([A-Z][a-z][a-z])(\d+)(_.*)?fs$/ ) {
$aachg = "$AA_code{uc($1)}${2}fs";
} elsif ( $aachg =~ /^([A-Z][a-z][a-z])(\d+)del$/ ) {
$aachg = "$AA_code{uc($1)}${2}del";
} elsif ( $aachg =~ /^([A-Z][a-z][a-z])(\D*)?(\d+)([\*\?])$/ ) {
my $aa = $AA_code{uc($1)};
my $ppos = $3;
if ( $2 ) {
for(my $i = 0; $i < length($2); $i += 3) {
$aa = $AA_code{ uc(substr($2, $i, 3)) };
$ppos++;
}
}
$aachg = "$aa$ppos$4";
} elsif ( $aachg =~ /^([A-Z][a-z][a-z][A-Z]\D*)(\d+)([A-Z][a-z][a-z][A-Z]\D*)$/ ) {
my ($aa1, $aa2) = ("", "");
for(my $i = 0; $i < length($1); $i += 3) {
$aa1 .= $AA_code{ uc(substr($1, $i, 3)) };
}
for(my $i = 0; $i < length($3); $i += 3) {
if ( substr($3, $i, 3) eq "ext" ) {
$aa2 .= "ext*?";
last;
}
$aa2 .= $AA_code{ uc(substr($3, $i, 3)) };
}
$aachg = "$aa1$2$aa2";
} elsif ( $aachg =~ /^([A-Z][a-z][a-z])(\d+)(_([A-Z][a-z][a-z])(\d+))?delins([A-Z].*)?$/ ) {
my $insaa = "";
$aachg = $AA_code{ uc($1) } . $2;
$aachg .= "_" . $AA_code{ uc($4) } . $5 if ( $4 );
if ( $6 ) {
for(my $i = 0; $i < length($6); $i += 3) {
$insaa .= $AA_code{ uc(substr($6, $i, 3)) } ? $AA_code{ uc(substr($6, $i, 3)) } : "?";
}
}
$aachg .= $insaa ? "delins$insaa" : "del";
} elsif ( $aachg =~ /^([A-Z][a-z][a-z])(\d+)(_([A-Z][a-z][a-z])(\d+))?delins\?+$/ ) {
$aachg = $AA_code{ uc($1) } . $2;
$aachg .= "_" . $AA_code{ uc($4) } . $5 if ( $4 );
$aachg .= "?";
} elsif ( $aachg =~ /^([A-Z][a-z][a-z])(\d+)(_([A-Z][a-z][a-z])(\d+))?dup$/ ) {
$aachg = $AA_code{ uc($1) } . $2;
$aachg .= "_" . $AA_code{ uc($4) } . $5 if ( $4 );
$aachg .= "dup";
} elsif ( $aachg =~ /^Ter(\d+)([A-Z][a-z][a-z])ext\*\?$/ ) {
$aachg = "*$1$AA_code{uc($2)}ext*?";
} else {
print STDERR "Unknown AA change format: $aachg\n";
}
}
# Move the aa position in multiple aa changes if they're silent. e.g. GC796GS will become C797S
if ( $aachg && $aachg =~ /^([A-Z]+)(\d+)([A-Z]+)$/ ) {
my ($aa1, $aap, $aa2) = ($1, $2, $3);
my $an = 0;
$an++ while($an < length($aa1)-1 && $an < length($aa2)-1 && substr($aa1, $an, 1) eq substr($aa2, $an, 1));
if ( $an ) {
$aa1 = substr($aa1, $an);
$aa2 = substr($aa2, $an);
$aap += $an;
$aachg = "$aa1$aap$aa2";
}
}
my @tmp2 = map { defined($_) ? $_ : ""; } (@e[1, 2], $aachg, $cdnachg, @e[4..9]);
my $alt = $e[10];
if ( $alt =~ /^\d+$/ ) {
$alt = $alts[$alt-1];
}
if ( $d_ref->{ GENE } && $e[5] && $d_ref->{ GENE } ne $e[5] ) { # Ignore if there's COSMIC and COSMIC gene is different from the gene
push(@d2, [$d_ref->{ SAMPLE }, @a[0..3], $alt, $type, $effect, @tmp2, @tmp, $d_ref->{ LOF }]);
} else {
push(@d1, [$d_ref->{ SAMPLE }, @a[0..3], $alt, $type, $effect, @tmp2, @tmp, $d_ref->{ LOF }]);
}
}
my @data;
if ( @d1 ) {
push(@data, @d1);
} else {
push(@data, @d2); # To ensure that outdated COSMIC gene symbols will still be captured.
}
##########################
# Second round filtering #
##########################
foreach my $d (@data) {
next unless( $var{ $vark } ); # Likely just in Undetermined.
my $type = length($d->[4]) == length($d->[5]) ? (length($d->[4]) == 1 ? "SNV" : (length($d->[4]) <= 3 ? "MNV" : "Complex" )) : (substr($d->[4], 0, 1) ne substr($d->[5], 0, 1) ? "Complex" : (length($d->[4]) > length($d->[5]) ? "Deletion" : "Insertion" ));
my ($af, $mq, $sn) = @$d[$HDRN{ AlleleFreq }, $HDRN{ MQ }, $HDRN{ SN }];
my ($m_af, $m_mq, $m_sn) = @$d[$HDRN{ Matched_AlleleFreq }, $HDRN{ Matched_MQ }, $HDRN{ Matched_SN }] if ( @pairhdrs > 0);
my $varn = @{ $var{ $vark } } + 0;
my $ave_af = mean( $var{ $vark } );
my $pass = ($varn/$sam_n > $FRACTION && $varn >= $CNT && $ave_af < $AVEFREQ && $d->[3] eq ".") ? "MULTI" : "TRUE"; # novel and present in $FRACTION samples
my $mpass = $pass;
if ( $d->[$HDRN{ CLN_GENE }] && $d->[$HDRN{ Gene }] ) { # make sure ClinVar gene matches the snpEff gene
my %cln_genes = map { $_ => 1 } split(/\||\:/, $d->[$HDRN{ CLN_GENE }]);;
unless ( exists($cln_genes{ $d->[$HDRN{ Gene }] } )) {
$d->[$HDRN{ CLNSIG }] = "";
}
}
my $clncheck = checkCLNSIG($d->[$HDRN{ CLNSIG }]);
my $class = $d->[3] =~ /COSM/ ? "COSMIC" : ($d->[3] =~ /^rs/ ? ($clncheck ? $clncheck : "dbSNP") : "Novel");
#$pass = "FALSE" unless ( $d->[24] > 0 ); # all variants from one position in reads
$pass = "DUP" if ( $pmean && $d->[$HDRN{ Pstd }] == 0 && $d->[$HDRN{ Bias }] !~ /1$/ && $d->[$HDRN{ Bias }] !~ /0$/ && (@amphdrs == 0) && $af < 0.35 ); # all variants from one position in reads
$mpass = "DUP" if ( $m_pmean && $d->[$HDRN{ Matched_Pstd }] == 0 && $d->[$HDRN{ Matched_Bias }] !~ /1$/ && $d->[$HDRN{ Matched_Bias }] !~ /0$/ && (@amphdrs == 0) && $m_af < 0.35 ); # all variants from one position in reads
$pass = "QMEAN" if (length($qmean) > 0 && $qmean < $MINQMEAN );
$mpass = "QMEAN" if ($m_qmean && length($m_qmean) > 0 && $m_qmean < $MINQMEAN );
$pass = "PMEAN" if ($pmean && $pmean < $MINPMEAN );
$mpass = "PMEAN" if ($m_pmean && $m_pmean < $MINPMEAN );
$pass = "MQ" if ( length($mq) > 0 && $mq < $MINMQ && $af < 0.5 ); # Keep low mapping quality but high allele frequency variants
$mpass = "MQ" if ( $m_mq && length($m_mq) > 0 && $m_mq < $MINMQ && $m_af < 0.5 ); # Keep low mapping quality but high allele frequency variants
$pass = "SN" if ( length($sn) > 0 && $sn < $SN );
$mpass = "SN" if ( $m_sn && length($m_sn) > 0 && $m_sn < $SN );
$pass = "MINFREQ" if ( $af < $MINFREQ );
$mpass = "MINFREQ" if ( $m_af && $m_af < $MINFREQ );
$pass = "MINVD" if ( $d->[$HDRN{ VD }] && $d->[$HDRN{ VD }] < $MINVD );
$mpass = "MINVD" if ( $HDRN{ Matched_VD } && $d->[$HDRN{ Matched_VD }] && $d->[$HDRN{ Matched_VD }] < $MINVD );
# Rescue deleterious dbSNP, such as rs80357372 (BRCA1 Q139* that is in dbSNP, but not in ClnSNP or COSMIC
if ( ($d->[6] =~ /STOP_GAINED/i || $d->[6] =~ /FRAME_?SHIFT/i) && $class eq "dbSNP" ) {
my $pos = $1 if ( $d->[10] =~ /(\d+)/ );
$class = "dbSNP_del" if ( $pos/$d->[12] < 0.95 );
}
# Consider splice variants deleterious
if ( $d->[6] =~ /SPLICE/i && $d->[6] !~ /region/i && $class eq "dbSNP" ) {
$class = "dbSNP_del";
}
if ( $d->[$HDRN{ GMAF }] ) { # GMAF
$d->[$HDRN{ GMAF }] =~ s/^\[//; $d->[$HDRN{ GMAF }] = (split /\]/, $d->[$HDRN{ GMAF }])[0];
my @mafs = split(/,/, $d->[$HDRN{ GMAF }]);
if ( @mafs == 2 ) {
$class = "dbSNP" if ( $mafs[1] ne "." && $mafs[1] > $MAF );
$d->[$HDRN{ GMAF }] = $mafs[1] ne "." ? $mafs[1] : "";
} elsif ( @mafs > 2 ) { # For dbSNP with multiple alleles in one position
my $mk = $d->[3] =~ /(rs\d+)/ ? $1 : "";
$mk .= "-$d->[4]-$d->[5]";
if ($MultiMaf{ $mk }) {
$class = "dbSNP" if( $MultiMaf{ $mk } > $MAF );
$d->[$HDRN{ GMAF }] = $MultiMaf{ $mk };
} else {
my @tmafs = ();
foreach( @mafs ) {
push(@tmafs, $_) unless( $_ eq "." );
}
$d->[$HDRN{ GMAF }] = join(",", @tmafs[1..$#tmafs]);
}
}
}
$pass = "CNTL" if ( $CONTROL{ $vark } );
$pass = "BIAS" if ( $opt_b && ($class eq "Novel"||$class eq "dbSNP") && ($d->[$HDRN{ Bias }] eq "2;1" || $d->[$HDRN{ Bias }] eq "2;0") && $d->[$HDRN{ AlleleFreq }] < 0.3 ); # Filter novel variants with strand bias.
if ( $clncheck eq "dbSNP" && $class ne "COSMIC" && $class ne "dbSNP_del" ) {
$class = "dbSNP";
}
$pass = "AMPBIAS" if ( @amphdrs > 0 && $d->[$HDRN{ GAmplicons }] && $d->[$HDRN{ GAmplicons }] < $d->[$HDRN{ TAmplicons }] );
if ( $opt_R && $pass eq "TRUE" && $varn/$sam_n > $MAXRATIO && $varn > $CNT ) { # present in $MAXRATIO samples, regardless of frequency
if ( max( $var{ $vark } ) > 0.35 ) {
$class = "dbSNP";
} else {
$pass = "MAXRATE" if ( $af < 0.35 );
}
}
my $lof = pop(@$d);
my $is_lof = "";
if ( $PRINTLOF ) {
my $effect = $d->[7];
$is_lof = ( $lof && $effect eq "HIGH" && index($lof, $d->[13]) != -1 ) ? "\tYES" : "\t";
}
if ( $pass eq "TRUE" || (@pairhdrs > 0 && $mpass eq "TRUE") ) {
print join("\t", @$d, $sam_n, $varn, sprintf("%.3f", $varn/$sam_n), $ave_af, $pass, $type, $class), "$is_lof\n";
} elsif ($opt_a) {
print join("\t", @$d, $sam_n, $varn, sprintf("%.3f", $varn/$sam_n), $ave_af, $pass, $type, $class), "$is_lof\n";
}
}
}
close( VCF );
}
print STDERR "Done.\n";
sub checkCLNSIG {
my $clnsig = shift;
return 0 if( $clnsig eq "" );
my @cs = split(/\||,/, $clnsig );
my $flag255 = 0;
my $flagno = 0;
my $flagyes = 0;
my $flags = 0;
foreach my $cs (@cs) {
$flagyes++ if ( $cs > 3 && $cs < 7 );
$flagno++ if ( $cs <= 3 && $cs >= 2 );
$flag255++ if ( $cs == 255 || $cs < 1 );
$flags++ unless( $cs == 1 ); # Untested doesn't count
}
if ( $flagyes ) {
return "ClnSNP_known" if ( $flagyes > 1 );
return "ClnSNP_known" if ( $flagyes > 0 && $flagno == 0 );
$flagyes >= $flagno && $flagno <= 1 && $flagyes/$flags >= 0.5 ? (return "ClnSNP_known") : (return "ClnSNP_unknown");
}
return "dbSNP" if ( $flagno > 1 && $flagno >= $flag255 );
return "ClnSNP_unknown" if ( $flag255 ); # Keep unknown significant variants
return "dbSNP";
}
sub mean {
my $ref = shift;
my ($sum, $n) = (0, 0);
foreach( @$ref ) {
$sum += $_;
$n++;
}
return sprintf("%.3f", $sum/$n);
}
sub max {
my $ref = shift;
my $max = 0;
foreach( @$ref ) {
$max = $_ if ( $max < $_ );
}
return $max;
}
sub setupMultiMaf {
my $in = shift;
open(MMAF, $in);
while( <MMAF> ) {
chomp;
my @a = split;
$MultiMaf{ "$a[2]-$a[3]-$a[4]" } = $a[5];
}
close( MMAF );
}
sub isPassingHardFilters {
# print STDERR "@_\n";
my ( $FILDEPTH, $FILPMEAN, $FILQMEAN, $depth, $pmean, $qual ) = @_;
if ( $FILDEPTH && $depth < $FILDEPTH ) {
return 0;
}
if ( $FILPMEAN && $pmean && $pmean < $FILPMEAN ){
return 0;
}
if ( $FILQMEAN && $qual && $qual < $FILQMEAN ){
return 0;
}
return 1;
}
sub extractFORMATdata {
my ($format, $format_data, $match_format_data, $d_ref) = @_;
my @formats = split(/:/, $format);
my @fdata = split(/:/, $format_data);
my @mfdata = $match_format_data ? split(/:/, $match_format_data) : ();
for (my $i = 0; $i < @formats; $i++) {
$d_ref->{ $formats[$i] } = $fdata[$i];
$d_ref->{ "M_$formats[$i]" } = $mfdata[$i] if ( $match_format_data );
}
if ( $d_ref->{ RD } ) {
$d_ref->{ RD } =~ /(\d+),(\d+)/ && ($d_ref->{ RD } = $1 + $2);
$d_ref->{ M_RD } && $d_ref->{ M_RD } =~ /(\d+),(\d+)/ && ($d_ref->{ M_RD } = $1 + $2);
}
# Adapt for Mutect or FreeBayes
unless ( $d_ref->{ PMEAN } ) { # Meaning not VarDict
delete $d_ref->{ AF };
if ( $d_ref->{ AD } ) { # in case it's not defined in FreeBayes
my @ads = split(/,/, $d_ref->{ AD });
my $ads_sum = 0;
$ads_sum += $_ foreach( @ads );
if ($ads_sum > 0) {
$d_ref->{ AF } = sprintf("%.3f", $ads[1]/$ads_sum);
} else {
$d_ref->{ AF } = '0';
}
$d_ref->{ VD } = $ads[1];
}
# Use AO and RO for allele freq calculation for FreeBayes and overwrite AD even if it exists
if ( $d_ref->{ AO } ) {
my $ao_sum = 0;
my @aos = split(/,/, $d_ref->{ AO });
@aos = sort { $b <=> $a } @aos; # Just make sure the first is the most frequency
$ao_sum += $_ foreach( @aos );
$d_ref->{ AF } = sprintf("%.3f", $aos[0]/($ao_sum+$d_ref->{RO}));
$d_ref->{ VD } = $aos[0];
}
if ( $match_format_data ) { # for somatic paired analysis
if ( $d_ref->{ M_AD } ) {
my @m_ads = split(/,/, $d_ref->{ M_AD });
my $m_ads_sum = 0;
foreach( @m_ads ) {
$m_ads_sum += $_ if ( /\d/ );
}
$d_ref->{ M_AF } = $m_ads_sum ? sprintf("%.3f", $m_ads[1]/$m_ads_sum) : 0;
$d_ref->{ M_VD } = $m_ads[1] && $m_ads[1] =~ /\d/ ? $m_ads[1] : 0;
}
# Use AO and RO for allele freq calculation for FreeBayes and overwrite AD even if it exists
if ( $d_ref->{ M_AO } ) {
my $m_ao_sum = 0;
my @m_aos = split(/,/, $d_ref->{ M_AO });
@m_aos = sort { $b <=> $a } @m_aos if ( $m_aos[0] =~ /\d/ ); # Just make sure the first is the most frequency
foreach( @m_aos ) {
$m_ao_sum += $_ if ( /\d/ );
}
my $m_ro = $d_ref->{M_RO} && $d_ref->{M_RO} =~ /\d/ ? $d_ref->{M_RO} : 0;
$d_ref->{ M_AF } = $m_ao_sum + $m_ro > 0 ? sprintf("%.3f", $m_aos[0]/($m_ao_sum+$m_ro)) : 0;
$d_ref->{ M_VD } = $m_aos[0] && $m_aos[0] =~ /\d/ ? $m_aos[0] : 0;
}
}
}
return $d_ref;
}
sub USAGE {
print <<USAGE;
The program will convert an annotated vcf files by snfEFF using dbSNP and COSMIC back to txt format. It also checks for quality
and add "PASS" column. It will not perform any filtering.
Usage: $0 [-H] [-F var_fraction] [-n sample_cnt] [-f freq] [-p pos] [-q quality] vcf_files
The program accepts more than one vcf files.
Options:
-H Print this help page
-b Novel or dbSNP variants with strand bias "2;1" or "2;0" and AF < 0.3 will be considered as false positive
-u Undeteremined won't be counted for the sample count.
-a Indicate to output all variants, even if they don't pass the parameters
-g Will output variants if the germline variant also passes the parameters
-s If set, it'll keep SNPEff's amino acid change as is. Default: it'll change three letter code to one
-r DOUBLE
When a novel variant is present in more than [fraction] of samples and mean allele frequency is less than -F, it's
considered as likely false positive. Default 0.4.
Used with -F and -n
-F DOUBLE
When the ave allele frequency is also below -F, the variant is considered likely false positive. Default 0.15.
Used with -r and -n
-n INT
When the variant is detected in greater or equal [sample_cnt] samples, the variant is considered likely false positive. Default 10.
Used with -r and -F
-R DOUBLE
When a passing variant is present in more than [fraction] of samples and at least -n samples , it's considered as
dbSNP, even if it's in COSMIC or apparent deleterious. Default 1.0. or no filtering. Use with caution. Don't use it for homogeneous
samples. Use only for hetereogeneous samples, such as 0.5, or any variants present in 50% of samples are considered
as dbSNP.
-f DOUBLE
When individual allele frequency < -f for variants, it was considered likely false poitives. Default: 0.02 or 2%
-p INT
The minimum mean position in reads for variants. Default: 5bp
-q DOUBLE
The minimum mean base quality phred score for variants. Default: 25
-P INT
The filtering mean position in reads for variants. The raw variant will be filtered on first place if the mean
position is less then INT. Default: 0bp
-Q DOUBLE
The filtering mean base quality phred score for variants. The raw variant will be filtered on first place
if the mean quality is less then DOUBLE. Default: 0
-M DOUBLE
The filtering mean mapping quality score for variants. The raw variant will be filtered if the mean mapping quality score is less then
specified unless the allele frequency is greater than 0.8.
Default: 10
-D INT
The filtering total depth. The raw variant will be filtered on first place if the total depth is less then INT. Default: 0
-V INT
The filtering variant depth. Variants with depth < INT will be considered false positive. Default: 2, or at least 2 reads are needed for a variant
-o signal
The signal/noise value. Default: 1.5
-c Control(s)
The control sample name(s). Any novel variants passing all above filters but also detected in Control sample will be considered
false positive. Use only when there's control sample. Multiple controls samples are separated using ":", e.g. s1:s2:s3.
-C additional_columns
Add additional columns in VCF to be appended to the output. Use : to separate multiple columns. Only those defined in VCF are allowed.
-G DOUBLE
The mininum GMAF value. Any variants with GMAF above this value is deemed dbSNP, regardless whether it's in COSMIC or not. Default: 0.0025
-A file
A file that contain GMAF when there're multiple alternative alleles. It's not easy to be parsed from CAF as the order is not clear.
Thus this extra file. Use only if you have it available. It should contain 6 columns, such as "chr1 907920 rs28430926 C G 0.1107",
where the last column is GMAF. Default to: /ngs/reference_data/genomes/Hsapiens/hg19/variation/dbSNP_multi_mafs_latest.txt. Use "", empty
string to disable it if you don't have one. If the default file doesn't exist, it'll be disabled.
A novel variant (non-dbSNP, non-COSMIC) is considered false positive if all three conditions (-r -F -n) are met. Any variant meeting the -p
or -q conditions are also considered likely false positive. False positive variants are annotated "FALSE" in column PASS, "TRUE" otherwise.
-L Report SNPEff LOF
AUTHOR
Written by Zhongwu Lai, AstraZeneca, Boston, USA
REPORTING BUGS
Report bugs to zhongwu\@yahoo.com
COPYRIGHT
This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.
USAGE
exit(0);
}