-
Notifications
You must be signed in to change notification settings - Fork 9.7k
/
Copy pathlstmrecognizer.cpp
812 lines (781 loc) · 32.5 KB
/
lstmrecognizer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
///////////////////////////////////////////////////////////////////////
// File: lstmrecognizer.cpp
// Description: Top-level line recognizer class for LSTM-based networks.
// Author: Ray Smith
// Created: Thu May 02 10:59:06 PST 2013
//
// (C) Copyright 2013, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////
#include "lstmrecognizer.h"
#include "allheaders.h"
#include "callcpp.h"
#include "dict.h"
#include "genericheap.h"
#include "helpers.h"
#include "imagedata.h"
#include "input.h"
#include "lstm.h"
#include "normalis.h"
#include "pageres.h"
#include "ratngs.h"
#include "recodebeam.h"
#include "scrollview.h"
#include "shapetable.h"
#include "statistc.h"
#include "tprintf.h"
namespace tesseract {
// Max number of blob choices to return in any given position.
const int kMaxChoices = 4;
// Default ratio between dict and non-dict words.
const double kDictRatio = 2.25;
// Default certainty offset to give the dictionary a chance.
const double kCertOffset = -0.085;
LSTMRecognizer::LSTMRecognizer()
: network_(NULL),
training_flags_(0),
training_iteration_(0),
sample_iteration_(0),
null_char_(UNICHAR_BROKEN),
weight_range_(0.0f),
learning_rate_(0.0f),
momentum_(0.0f),
dict_(NULL),
search_(NULL),
debug_win_(NULL) {}
LSTMRecognizer::~LSTMRecognizer() {
delete network_;
delete dict_;
delete search_;
}
// Writes to the given file. Returns false in case of error.
bool LSTMRecognizer::Serialize(TFile* fp) const {
if (!network_->Serialize(fp)) return false;
if (!GetUnicharset().save_to_file(fp)) return false;
if (!network_str_.Serialize(fp)) return false;
if (fp->FWrite(&training_flags_, sizeof(training_flags_), 1) != 1)
return false;
if (fp->FWrite(&training_iteration_, sizeof(training_iteration_), 1) != 1)
return false;
if (fp->FWrite(&sample_iteration_, sizeof(sample_iteration_), 1) != 1)
return false;
if (fp->FWrite(&null_char_, sizeof(null_char_), 1) != 1) return false;
if (fp->FWrite(&weight_range_, sizeof(weight_range_), 1) != 1) return false;
if (fp->FWrite(&learning_rate_, sizeof(learning_rate_), 1) != 1) return false;
if (fp->FWrite(&momentum_, sizeof(momentum_), 1) != 1) return false;
if (IsRecoding() && !recoder_.Serialize(fp)) return false;
return true;
}
// Reads from the given file. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
bool LSTMRecognizer::DeSerialize(bool swap, TFile* fp) {
delete network_;
network_ = Network::CreateFromFile(swap, fp);
if (network_ == NULL) return false;
if (!ccutil_.unicharset.load_from_file(fp, false)) return false;
if (!network_str_.DeSerialize(swap, fp)) return false;
if (fp->FRead(&training_flags_, sizeof(training_flags_), 1) != 1)
return false;
if (fp->FRead(&training_iteration_, sizeof(training_iteration_), 1) != 1)
return false;
if (fp->FRead(&sample_iteration_, sizeof(sample_iteration_), 1) != 1)
return false;
if (fp->FRead(&null_char_, sizeof(null_char_), 1) != 1) return false;
if (fp->FRead(&weight_range_, sizeof(weight_range_), 1) != 1) return false;
if (fp->FRead(&learning_rate_, sizeof(learning_rate_), 1) != 1) return false;
if (fp->FRead(&momentum_, sizeof(momentum_), 1) != 1) return false;
if (IsRecoding()) {
if (!recoder_.DeSerialize(swap, fp)) return false;
RecodedCharID code;
recoder_.EncodeUnichar(UNICHAR_SPACE, &code);
if (code(0) != UNICHAR_SPACE) {
tprintf("Space was garbled in recoding!!\n");
return false;
}
}
// TODO(rays) swaps!
network_->SetRandomizer(&randomizer_);
network_->CacheXScaleFactor(network_->XScaleFactor());
return true;
}
// Loads the dictionary if possible from the traineddata file.
// Prints a warning message, and returns false but otherwise fails silently
// and continues to work without it if loading fails.
// Note that dictionary load is independent from DeSerialize, but dependent
// on the unicharset matching. This enables training to deserialize a model
// from checkpoint or restore without having to go back and reload the
// dictionary.
bool LSTMRecognizer::LoadDictionary(const char* data_file_name,
const char* lang) {
delete dict_;
dict_ = new Dict(&ccutil_);
dict_->SetupForLoad(Dict::GlobalDawgCache());
dict_->LoadLSTM(data_file_name, lang);
if (dict_->FinishLoad()) return true; // Success.
tprintf("Failed to load any lstm-specific dictionaries for lang %s!!\n",
lang);
delete dict_;
dict_ = NULL;
return false;
}
// Recognizes the line image, contained within image_data, returning the
// ratings matrix and matching box_word for each WERD_RES in the output.
void LSTMRecognizer::RecognizeLine(const ImageData& image_data, bool invert,
bool debug, double worst_dict_cert,
bool use_alternates,
const UNICHARSET* target_unicharset,
const TBOX& line_box, float score_ratio,
bool one_word,
PointerVector<WERD_RES>* words) {
NetworkIO outputs;
float label_threshold = use_alternates ? 0.75f : 0.0f;
float scale_factor;
NetworkIO inputs;
if (!RecognizeLine(image_data, invert, debug, false, label_threshold,
&scale_factor, &inputs, &outputs))
return;
if (IsRecoding()) {
if (search_ == NULL) {
search_ =
new RecodeBeamSearch(recoder_, null_char_, SimpleTextOutput(), dict_);
}
search_->Decode(outputs, kDictRatio, kCertOffset, worst_dict_cert, NULL);
search_->ExtractBestPathAsWords(line_box, scale_factor, debug,
&GetUnicharset(), words);
} else {
GenericVector<int> label_coords;
GenericVector<int> labels;
LabelsFromOutputs(outputs, label_threshold, &labels, &label_coords);
WordsFromOutputs(outputs, labels, label_coords, line_box, debug,
use_alternates, one_word, score_ratio, scale_factor,
target_unicharset, words);
}
}
// Builds a set of tesseract-compatible WERD_RESs aligned to line_box,
// corresponding to the network output in outputs, labels, label_coords.
// one_word generates a single word output, that may include spaces inside.
// use_alternates generates alternative BLOB_CHOICEs and segmentation paths.
// If not NULL, we attempt to translate the output to target_unicharset, but do
// not guarantee success, due to mismatches. In that case the output words are
// marked with our UNICHARSET, not the caller's.
void LSTMRecognizer::WordsFromOutputs(
const NetworkIO& outputs, const GenericVector<int>& labels,
const GenericVector<int> label_coords, const TBOX& line_box, bool debug,
bool use_alternates, bool one_word, float score_ratio, float scale_factor,
const UNICHARSET* target_unicharset, PointerVector<WERD_RES>* words) {
// Convert labels to unichar-ids.
int word_end = 0;
float prev_space_cert = 0.0f;
for (int i = 0; i < labels.size(); i = word_end) {
word_end = i + 1;
if (labels[i] == null_char_ || labels[i] == UNICHAR_SPACE) {
continue;
}
float space_cert = 0.0f;
if (one_word) {
word_end = labels.size();
} else {
// Find the end of the word at the first null_char_ that leads to the
// first UNICHAR_SPACE.
while (word_end < labels.size() && labels[word_end] != UNICHAR_SPACE)
++word_end;
if (word_end < labels.size()) {
float rating;
outputs.ScoresOverRange(label_coords[word_end],
label_coords[word_end] + 1, UNICHAR_SPACE,
null_char_, &rating, &space_cert);
}
while (word_end > i && labels[word_end - 1] == null_char_) --word_end;
}
ASSERT_HOST(word_end > i);
// Create a WERD_RES for the output word.
if (debug)
tprintf("Creating word from outputs over [%d,%d)\n", i, word_end);
WERD_RES* word =
WordFromOutput(line_box, outputs, i, word_end, score_ratio,
MIN(prev_space_cert, space_cert), debug,
use_alternates && !SimpleTextOutput(), target_unicharset,
labels, label_coords, scale_factor);
if (word == NULL && target_unicharset != NULL) {
// Unicharset translation failed - use decoder_ instead, and disable
// the segmentation search on output, as it won't understand the encoding.
word = WordFromOutput(line_box, outputs, i, word_end, score_ratio,
MIN(prev_space_cert, space_cert), debug, false,
NULL, labels, label_coords, scale_factor);
}
prev_space_cert = space_cert;
words->push_back(word);
}
}
// Helper computes min and mean best results in the output.
void LSTMRecognizer::OutputStats(const NetworkIO& outputs, float* min_output,
float* mean_output, float* sd) {
const int kOutputScale = MAX_INT8;
STATS stats(0, kOutputScale + 1);
for (int t = 0; t < outputs.Width(); ++t) {
int best_label = outputs.BestLabel(t, NULL);
if (best_label != null_char_ || t == 0) {
float best_output = outputs.f(t)[best_label];
stats.add(static_cast<int>(kOutputScale * best_output), 1);
}
}
*min_output = static_cast<float>(stats.min_bucket()) / kOutputScale;
*mean_output = stats.mean() / kOutputScale;
*sd = stats.sd() / kOutputScale;
}
// Recognizes the image_data, returning the labels,
// scores, and corresponding pairs of start, end x-coords in coords.
// If label_threshold is positive, uses it for making the labels, otherwise
// uses standard ctc.
bool LSTMRecognizer::RecognizeLine(const ImageData& image_data, bool invert,
bool debug, bool re_invert,
float label_threshold, float* scale_factor,
NetworkIO* inputs, NetworkIO* outputs) {
// Maximum width of image to train on.
const int kMaxImageWidth = 2560;
// This ensures consistent recognition results.
SetRandomSeed();
int min_width = network_->XScaleFactor();
Pix* pix = Input::PrepareLSTMInputs(image_data, network_, min_width,
&randomizer_, scale_factor);
if (pix == NULL) {
tprintf("Line cannot be recognized!!\n");
return false;
}
if (network_->IsTraining() && pixGetWidth(pix) > kMaxImageWidth) {
tprintf("Image too large to learn!! Size = %dx%d\n", pixGetWidth(pix),
pixGetHeight(pix));
pixDestroy(&pix);
return false;
}
// Reduction factor from image to coords.
*scale_factor = min_width / *scale_factor;
inputs->set_int_mode(IsIntMode());
SetRandomSeed();
Input::PreparePixInput(network_->InputShape(), pix, &randomizer_, inputs);
network_->Forward(debug, *inputs, NULL, &scratch_space_, outputs);
// Check for auto inversion.
float pos_min, pos_mean, pos_sd;
OutputStats(*outputs, &pos_min, &pos_mean, &pos_sd);
if (invert && pos_min < 0.5) {
// Run again inverted and see if it is any better.
NetworkIO inv_inputs, inv_outputs;
inv_inputs.set_int_mode(IsIntMode());
SetRandomSeed();
pixInvert(pix, pix);
Input::PreparePixInput(network_->InputShape(), pix, &randomizer_,
&inv_inputs);
network_->Forward(debug, inv_inputs, NULL, &scratch_space_, &inv_outputs);
float inv_min, inv_mean, inv_sd;
OutputStats(inv_outputs, &inv_min, &inv_mean, &inv_sd);
if (inv_min > pos_min && inv_mean > pos_mean && inv_sd < pos_sd) {
// Inverted did better. Use inverted data.
if (debug) {
tprintf("Inverting image: old min=%g, mean=%g, sd=%g, inv %g,%g,%g\n",
pos_min, pos_mean, pos_sd, inv_min, inv_mean, inv_sd);
}
*outputs = inv_outputs;
*inputs = inv_inputs;
} else if (re_invert) {
// Inverting was not an improvement, so undo and run again, so the
// outputs match the best forward result.
SetRandomSeed();
network_->Forward(debug, *inputs, NULL, &scratch_space_, outputs);
}
}
pixDestroy(&pix);
if (debug) {
GenericVector<int> labels, coords;
LabelsFromOutputs(*outputs, label_threshold, &labels, &coords);
DisplayForward(*inputs, labels, coords, "LSTMForward", &debug_win_);
DebugActivationPath(*outputs, labels, coords);
}
return true;
}
// Returns a tesseract-compatible WERD_RES from the line recognizer outputs.
// line_box should be the bounding box of the line image in the main image,
// outputs the output of the network,
// [word_start, word_end) the interval over which to convert,
// score_ratio for choosing alternate classifier choices,
// use_alternates to control generation of alternative segmentations,
// labels, label_coords, scale_factor from RecognizeLine above.
// If target_unicharset is not NULL, attempts to translate the internal
// unichar_ids to the target_unicharset, but falls back to untranslated ids
// if the translation should fail.
WERD_RES* LSTMRecognizer::WordFromOutput(
const TBOX& line_box, const NetworkIO& outputs, int word_start,
int word_end, float score_ratio, float space_certainty, bool debug,
bool use_alternates, const UNICHARSET* target_unicharset,
const GenericVector<int>& labels, const GenericVector<int>& label_coords,
float scale_factor) {
WERD_RES* word_res = InitializeWord(
line_box, word_start, word_end, space_certainty, use_alternates,
target_unicharset, labels, label_coords, scale_factor);
int max_blob_run = word_res->ratings->bandwidth();
for (int width = 1; width <= max_blob_run; ++width) {
int col = 0;
for (int i = word_start; i + width <= word_end; ++i) {
if (labels[i] != null_char_) {
// Starting at i, use width labels, but stop at the next null_char_.
// This forms all combinations of blobs between regions of null_char_.
int j = i + 1;
while (j - i < width && labels[j] != null_char_) ++j;
if (j - i == width) {
// Make the blob choices.
int end_coord = label_coords[j];
if (j < word_end && labels[j] == null_char_)
end_coord = label_coords[j + 1];
BLOB_CHOICE_LIST* choices = GetBlobChoices(
col, col + width - 1, debug, outputs, target_unicharset,
label_coords[i], end_coord, score_ratio);
if (choices == NULL) {
delete word_res;
return NULL;
}
word_res->ratings->put(col, col + width - 1, choices);
}
++col;
}
}
}
if (use_alternates) {
// Merge adjacent single results over null_char boundaries.
int col = 0;
for (int i = word_start; i + 2 < word_end; ++i) {
if (labels[i] != null_char_ && labels[i + 1] == null_char_ &&
labels[i + 2] != null_char_ &&
(i == word_start || labels[i - 1] == null_char_) &&
(i + 3 == word_end || labels[i + 3] == null_char_)) {
int end_coord = label_coords[i + 3];
if (i + 3 < word_end && labels[i + 3] == null_char_)
end_coord = label_coords[i + 4];
BLOB_CHOICE_LIST* choices =
GetBlobChoices(col, col + 1, debug, outputs, target_unicharset,
label_coords[i], end_coord, score_ratio);
if (choices == NULL) {
delete word_res;
return NULL;
}
word_res->ratings->put(col, col + 1, choices);
}
if (labels[i] != null_char_) ++col;
}
} else {
word_res->FakeWordFromRatings(TOP_CHOICE_PERM);
}
return word_res;
}
// Sets up a word with the ratings matrix and fake blobs with boxes in the
// right places.
WERD_RES* LSTMRecognizer::InitializeWord(const TBOX& line_box, int word_start,
int word_end, float space_certainty,
bool use_alternates,
const UNICHARSET* target_unicharset,
const GenericVector<int>& labels,
const GenericVector<int>& label_coords,
float scale_factor) {
// Make a fake blob for each non-zero label.
C_BLOB_LIST blobs;
C_BLOB_IT b_it(&blobs);
// num_blobs is the length of the diagonal of the ratings matrix.
int num_blobs = 0;
// max_blob_run is the diagonal width of the ratings matrix
int max_blob_run = 0;
int blob_run = 0;
for (int i = word_start; i < word_end; ++i) {
if (IsRecoding() && !recoder_.IsValidFirstCode(labels[i])) continue;
if (labels[i] != null_char_) {
// Make a fake blob.
TBOX box(label_coords[i], 0, label_coords[i + 1], line_box.height());
box.scale(scale_factor);
box.move(ICOORD(line_box.left(), line_box.bottom()));
box.set_top(line_box.top());
b_it.add_after_then_move(C_BLOB::FakeBlob(box));
++num_blobs;
++blob_run;
}
if (labels[i] == null_char_ || i + 1 == word_end) {
if (blob_run > max_blob_run)
max_blob_run = blob_run;
}
}
if (!use_alternates) max_blob_run = 1;
ASSERT_HOST(label_coords.size() >= word_end);
// Make a fake word from the blobs.
WERD* word = new WERD(&blobs, word_start > 1 ? 1 : 0, NULL);
// Make a WERD_RES from the word.
WERD_RES* word_res = new WERD_RES(word);
word_res->uch_set =
target_unicharset != NULL ? target_unicharset : &GetUnicharset();
word_res->combination = true; // Give it ownership of the word.
word_res->space_certainty = space_certainty;
word_res->ratings = new MATRIX(num_blobs, max_blob_run);
return word_res;
}
// Converts an array of labels to utf-8, whether or not the labels are
// augmented with character boundaries.
STRING LSTMRecognizer::DecodeLabels(const GenericVector<int>& labels) {
STRING result;
int end = 1;
for (int start = 0; start < labels.size(); start = end) {
if (labels[start] == null_char_) {
end = start + 1;
} else {
result += DecodeLabel(labels, start, &end, NULL);
}
}
return result;
}
// Displays the forward results in a window with the characters and
// boundaries as determined by the labels and label_coords.
void LSTMRecognizer::DisplayForward(const NetworkIO& inputs,
const GenericVector<int>& labels,
const GenericVector<int>& label_coords,
const char* window_name,
ScrollView** window) {
#ifndef GRAPHICS_DISABLED // do nothing if there's no graphics
Pix* input_pix = inputs.ToPix();
Network::ClearWindow(false, window_name, pixGetWidth(input_pix),
pixGetHeight(input_pix), window);
int line_height = Network::DisplayImage(input_pix, *window);
DisplayLSTMOutput(labels, label_coords, line_height, *window);
#endif // GRAPHICS_DISABLED
}
// Displays the labels and cuts at the corresponding xcoords.
// Size of labels should match xcoords.
void LSTMRecognizer::DisplayLSTMOutput(const GenericVector<int>& labels,
const GenericVector<int>& xcoords,
int height, ScrollView* window) {
#ifndef GRAPHICS_DISABLED // do nothing if there's no graphics
int x_scale = network_->XScaleFactor();
window->TextAttributes("Arial", height / 4, false, false, false);
int end = 1;
for (int start = 0; start < labels.size(); start = end) {
int xpos = xcoords[start] * x_scale;
if (labels[start] == null_char_) {
end = start + 1;
window->Pen(ScrollView::RED);
} else {
window->Pen(ScrollView::GREEN);
const char* str = DecodeLabel(labels, start, &end, NULL);
if (*str == '\\') str = "\\\\";
xpos = xcoords[(start + end) / 2] * x_scale;
window->Text(xpos, height, str);
}
window->Line(xpos, 0, xpos, height * 3 / 2);
}
window->Update();
#endif // GRAPHICS_DISABLED
}
// Prints debug output detailing the activation path that is implied by the
// label_coords.
void LSTMRecognizer::DebugActivationPath(const NetworkIO& outputs,
const GenericVector<int>& labels,
const GenericVector<int>& xcoords) {
if (xcoords[0] > 0)
DebugActivationRange(outputs, "<null>", null_char_, 0, xcoords[0]);
int end = 1;
for (int start = 0; start < labels.size(); start = end) {
if (labels[start] == null_char_) {
end = start + 1;
DebugActivationRange(outputs, "<null>", null_char_, xcoords[start],
xcoords[end]);
continue;
} else {
int decoded;
const char* label = DecodeLabel(labels, start, &end, &decoded);
DebugActivationRange(outputs, label, labels[start], xcoords[start],
xcoords[start + 1]);
for (int i = start + 1; i < end; ++i) {
DebugActivationRange(outputs, DecodeSingleLabel(labels[i]), labels[i],
xcoords[i], xcoords[i + 1]);
}
}
}
}
// Prints debug output detailing activations and 2nd choice over a range
// of positions.
void LSTMRecognizer::DebugActivationRange(const NetworkIO& outputs,
const char* label, int best_choice,
int x_start, int x_end) {
tprintf("%s=%d On [%d, %d), scores=", label, best_choice, x_start, x_end);
double max_score = 0.0;
double mean_score = 0.0;
int width = x_end - x_start;
for (int x = x_start; x < x_end; ++x) {
const float* line = outputs.f(x);
double score = line[best_choice] * 100.0;
if (score > max_score) max_score = score;
mean_score += score / width;
int best_c = 0;
double best_score = 0.0;
for (int c = 0; c < outputs.NumFeatures(); ++c) {
if (c != best_choice && line[c] > best_score) {
best_c = c;
best_score = line[c];
}
}
tprintf(" %.3g(%s=%d=%.3g)", score, DecodeSingleLabel(best_c), best_c,
best_score * 100.0);
}
tprintf(", Mean=%g, max=%g\n", mean_score, max_score);
}
// Helper returns true if the null_char is the winner at t, and it beats the
// null_threshold, or the next choice is space, in which case we will use the
// null anyway.
static bool NullIsBest(const NetworkIO& output, float null_thr,
int null_char, int t) {
if (output.f(t)[null_char] >= null_thr) return true;
if (output.BestLabel(t, null_char, null_char, NULL) != UNICHAR_SPACE)
return false;
return output.f(t)[null_char] > output.f(t)[UNICHAR_SPACE];
}
// Converts the network output to a sequence of labels. Outputs labels, scores
// and start xcoords of each char, and each null_char_, with an additional
// final xcoord for the end of the output.
// The conversion method is determined by internal state.
void LSTMRecognizer::LabelsFromOutputs(const NetworkIO& outputs, float null_thr,
GenericVector<int>* labels,
GenericVector<int>* xcoords) {
if (SimpleTextOutput()) {
LabelsViaSimpleText(outputs, labels, xcoords);
} else if (IsRecoding()) {
LabelsViaReEncode(outputs, labels, xcoords);
} else if (null_thr <= 0.0) {
LabelsViaCTC(outputs, labels, xcoords);
} else {
LabelsViaThreshold(outputs, null_thr, labels, xcoords);
}
}
// Converts the network output to a sequence of labels, using a threshold
// on the null_char_ to determine character boundaries. Outputs labels, scores
// and start xcoords of each char, and each null_char_, with an additional
// final xcoord for the end of the output.
// The label output is the one with the highest score in the interval between
// null_chars_.
void LSTMRecognizer::LabelsViaThreshold(const NetworkIO& output,
float null_thr,
GenericVector<int>* labels,
GenericVector<int>* xcoords) {
labels->truncate(0);
xcoords->truncate(0);
int width = output.Width();
int t = 0;
// Skip any initial non-char.
while (t < width && NullIsBest(output, null_thr, null_char_, t)) {
++t;
}
while (t < width) {
ASSERT_HOST(!std::isnan(output.f(t)[null_char_]));
int label = output.BestLabel(t, null_char_, null_char_, NULL);
int char_start = t++;
while (t < width && !NullIsBest(output, null_thr, null_char_, t) &&
label == output.BestLabel(t, null_char_, null_char_, NULL)) {
++t;
}
int char_end = t;
labels->push_back(label);
xcoords->push_back(char_start);
// Find the end of the non-char, and compute its score.
while (t < width && NullIsBest(output, null_thr, null_char_, t)) {
++t;
}
if (t > char_end) {
labels->push_back(null_char_);
xcoords->push_back(char_end);
}
}
xcoords->push_back(width);
}
// Converts the network output to a sequence of labels, with scores and
// start x-coords of the character labels. Retains the null_char_ as the
// end x-coord, where already present, otherwise the start of the next
// character is the end.
// The number of labels, scores, and xcoords is always matched, except that
// there is always an additional xcoord for the last end position.
void LSTMRecognizer::LabelsViaCTC(const NetworkIO& output,
GenericVector<int>* labels,
GenericVector<int>* xcoords) {
labels->truncate(0);
xcoords->truncate(0);
int width = output.Width();
int t = 0;
while (t < width) {
float score = 0.0f;
int label = output.BestLabel(t, &score);
labels->push_back(label);
xcoords->push_back(t);
while (++t < width && output.BestLabel(t, NULL) == label) {
}
}
xcoords->push_back(width);
}
// As LabelsViaCTC except that this function constructs the best path that
// contains only legal sequences of subcodes for CJK.
void LSTMRecognizer::LabelsViaReEncode(const NetworkIO& output,
GenericVector<int>* labels,
GenericVector<int>* xcoords) {
if (search_ == NULL) {
search_ =
new RecodeBeamSearch(recoder_, null_char_, SimpleTextOutput(), dict_);
}
search_->Decode(output, 1.0, 0.0, RecodeBeamSearch::kMinCertainty, NULL);
search_->ExtractBestPathAsLabels(labels, xcoords);
}
// Converts the network output to a sequence of labels, with scores, using
// the simple character model (each position is a char, and the null_char_ is
// mainly intended for tail padding.)
void LSTMRecognizer::LabelsViaSimpleText(const NetworkIO& output,
GenericVector<int>* labels,
GenericVector<int>* xcoords) {
labels->truncate(0);
xcoords->truncate(0);
int width = output.Width();
for (int t = 0; t < width; ++t) {
float score = 0.0f;
int label = output.BestLabel(t, &score);
if (label != null_char_) {
labels->push_back(label);
xcoords->push_back(t);
}
}
xcoords->push_back(width);
}
// Helper returns a BLOB_CHOICE_LIST for the choices in a given x-range.
// Handles either LSTM labels or direct unichar-ids.
// Score ratio determines the worst ratio between top choice and remainder.
// If target_unicharset is not NULL, attempts to translate to the target
// unicharset, returning NULL on failure.
BLOB_CHOICE_LIST* LSTMRecognizer::GetBlobChoices(
int col, int row, bool debug, const NetworkIO& output,
const UNICHARSET* target_unicharset, int x_start, int x_end,
float score_ratio) {
float rating = 0.0f, certainty = 0.0f;
int label = output.BestChoiceOverRange(x_start, x_end, UNICHAR_SPACE,
null_char_, &rating, &certainty);
int unichar_id = label == null_char_ ? UNICHAR_SPACE : label;
if (debug) {
tprintf("Best choice over range %d,%d=unichar%d=%s r = %g, cert=%g\n",
x_start, x_end, unichar_id, DecodeSingleLabel(label), rating,
certainty);
}
BLOB_CHOICE_LIST* choices = new BLOB_CHOICE_LIST;
BLOB_CHOICE_IT bc_it(choices);
if (!AddBlobChoices(unichar_id, rating, certainty, col, row,
target_unicharset, &bc_it)) {
delete choices;
return NULL;
}
// Get the other choices.
double best_cert = certainty;
for (int c = 0; c < output.NumFeatures(); ++c) {
if (c == label || c == UNICHAR_SPACE || c == null_char_) continue;
// Compute the score over the range.
output.ScoresOverRange(x_start, x_end, c, null_char_, &rating, &certainty);
int unichar_id = c == null_char_ ? UNICHAR_SPACE : c;
if (certainty >= best_cert - score_ratio &&
!AddBlobChoices(unichar_id, rating, certainty, col, row,
target_unicharset, &bc_it)) {
delete choices;
return NULL;
}
}
choices->sort(&BLOB_CHOICE::SortByRating);
if (bc_it.length() > kMaxChoices) {
bc_it.move_to_first();
for (int i = 0; i < kMaxChoices; ++i)
bc_it.forward();
while (!bc_it.at_first()) {
delete bc_it.extract();
bc_it.forward();
}
}
return choices;
}
// Adds to the given iterator, the blob choices for the target_unicharset
// that correspond to the given LSTM unichar_id.
// Returns false if unicharset translation failed.
bool LSTMRecognizer::AddBlobChoices(int unichar_id, float rating,
float certainty, int col, int row,
const UNICHARSET* target_unicharset,
BLOB_CHOICE_IT* bc_it) {
int target_id = unichar_id;
if (target_unicharset != NULL) {
const char* utf8 = GetUnicharset().id_to_unichar(unichar_id);
if (target_unicharset->contains_unichar(utf8)) {
target_id = target_unicharset->unichar_to_id(utf8);
} else {
return false;
}
}
BLOB_CHOICE* choice = new BLOB_CHOICE(target_id, rating, certainty, -1, 1.0f,
static_cast<float>(MAX_INT16), 0.0f,
BCC_STATIC_CLASSIFIER);
choice->set_matrix_cell(col, row);
bc_it->add_after_then_move(choice);
return true;
}
// Returns a string corresponding to the label starting at start. Sets *end
// to the next start and if non-null, *decoded to the unichar id.
const char* LSTMRecognizer::DecodeLabel(const GenericVector<int>& labels,
int start, int* end, int* decoded) {
*end = start + 1;
if (IsRecoding()) {
// Decode labels via recoder_.
RecodedCharID code;
if (labels[start] == null_char_) {
if (decoded != NULL) {
code.Set(0, null_char_);
*decoded = recoder_.DecodeUnichar(code);
}
return "<null>";
}
int index = start;
while (index < labels.size() &&
code.length() < RecodedCharID::kMaxCodeLen) {
code.Set(code.length(), labels[index++]);
while (index < labels.size() && labels[index] == null_char_) ++index;
int uni_id = recoder_.DecodeUnichar(code);
// If the next label isn't a valid first code, then we need to continue
// extending even if we have a valid uni_id from this prefix.
if (uni_id != INVALID_UNICHAR_ID &&
(index == labels.size() ||
code.length() == RecodedCharID::kMaxCodeLen ||
recoder_.IsValidFirstCode(labels[index]))) {
*end = index;
if (decoded != NULL) *decoded = uni_id;
if (uni_id == UNICHAR_SPACE) return " ";
return GetUnicharset().get_normed_unichar(uni_id);
}
}
return "<Undecodable>";
} else {
if (decoded != NULL) *decoded = labels[start];
if (labels[start] == null_char_) return "<null>";
if (labels[start] == UNICHAR_SPACE) return " ";
return GetUnicharset().get_normed_unichar(labels[start]);
}
}
// Returns a string corresponding to a given single label id, falling back to
// a default of ".." for part of a multi-label unichar-id.
const char* LSTMRecognizer::DecodeSingleLabel(int label) {
if (label == null_char_) return "<null>";
if (IsRecoding()) {
// Decode label via recoder_.
RecodedCharID code;
code.Set(0, label);
label = recoder_.DecodeUnichar(code);
if (label == INVALID_UNICHAR_ID) return ".."; // Part of a bigger code.
}
if (label == UNICHAR_SPACE) return " ";
return GetUnicharset().get_normed_unichar(label);
}
} // namespace tesseract.