-
Notifications
You must be signed in to change notification settings - Fork 1.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Motivation for allowing zero rate in Poisson in v0.11.0? #1025
Comments
I think the comment in scikit-hep/pyhf#293 (comment) explains the reasoning well. In general in TFP we try to consider measure-zero boundaries as in-support if possible. It seems in this case like the poisson is well defined, i.e. when rate is 0 the number of events observed over any given interval is always zero. |
This is a fine justification, however, it would certainly deviate from all other libraries.
The Poisson for rate parameter 0 is never well-defined (e.g. https://en.wikipedia.org/wiki/Poisson_distribution). Note that if you are going to use this reasoning, you would justify having P(0|0)=0, instead of P(0|0)=1. It would have to be somewhat of a degenerate distribution. Does this mean tensorflow_probability is defining |
Closing as was resolved in |
Hi. 👋 As part of TensorFlow Probability
v0.11.0
0b66e74 allowed for zero rates in the Poisson distribution, which is a pretty important change. It has a direct impact on our library and it also now diverges from all other major tensor libraries in behavior asPython virtual environment used
(in a fresh Python virtual environment called
tfp-issue
)the following example
gives
(The above is using
pyhf
to call down to the backends, but I can write a pure NumPy, TensorFlow, JAX, and PyTorch example if that would be helpful/of interest.)As this change was explicitly made we understand that there was a reason for it, but it would be helpful for us to understand what that was so we can appropriately expect and alter TensorFlow Probability's behavior if necessary. Can the TFP dev team comment on the motivations for this change?
Also thank you for developing TensorFlow Probability — we really appreciate that we can use it.
Related Issue/PR
cc @lukasheinrich @kratsg
The text was updated successfully, but these errors were encountered: