-
Notifications
You must be signed in to change notification settings - Fork 45.8k
/
fsns.py
185 lines (163 loc) · 6.19 KB
/
fsns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# -*- coding: utf-8 -*-
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Configuration to read FSNS dataset https://goo.gl/3Ldm8v."""
import os
import re
import tensorflow as tf
from tensorflow.contrib import slim
import logging
DEFAULT_DATASET_DIR = os.path.join(os.path.dirname(__file__), 'data', 'fsns')
# The dataset configuration, should be used only as a default value.
DEFAULT_CONFIG = {
'name': 'FSNS',
'splits': {
'train': {
'size': 1044868,
'pattern': 'train/train*'
},
'test': {
'size': 20404,
'pattern': 'test/test*'
},
'validation': {
'size': 16150,
'pattern': 'validation/validation*'
}
},
'charset_filename': 'charset_size=134.txt',
'image_shape': (150, 600, 3),
'num_of_views': 4,
'max_sequence_length': 37,
'null_code': 133,
'items_to_descriptions': {
'image': 'A [150 x 600 x 3] color image.',
'label': 'Characters codes.',
'text': 'A unicode string.',
'length': 'A length of the encoded text.',
'num_of_views': 'A number of different views stored within the image.'
}
}
def read_charset(filename, null_character=u'\u2591'):
"""Reads a charset definition from a tab separated text file.
charset file has to have format compatible with the FSNS dataset.
Args:
filename: a path to the charset file.
null_character: a unicode character used to replace '<null>' character. the
default value is a light shade block '░'.
Returns:
a dictionary with keys equal to character codes and values - unicode
characters.
"""
pattern = re.compile(r'(\d+)\t(.+)')
charset = {}
with tf.io.gfile.GFile(filename) as f:
for i, line in enumerate(f):
m = pattern.match(line)
if m is None:
logging.warning('incorrect charset file. line #%d: %s', i, line)
continue
code = int(m.group(1))
char = m.group(2)
if char == '<nul>':
char = null_character
charset[code] = char
return charset
class _NumOfViewsHandler(slim.tfexample_decoder.ItemHandler):
"""Convenience handler to determine number of views stored in an image."""
def __init__(self, width_key, original_width_key, num_of_views):
super(_NumOfViewsHandler, self).__init__([width_key, original_width_key])
self._width_key = width_key
self._original_width_key = original_width_key
self._num_of_views = num_of_views
def tensors_to_item(self, keys_to_tensors):
return tf.cast(
self._num_of_views * keys_to_tensors[self._original_width_key] /
keys_to_tensors[self._width_key], dtype=tf.int64)
def get_split(split_name, dataset_dir=None, config=None):
"""Returns a dataset tuple for FSNS dataset.
Args:
split_name: A train/test split name.
dataset_dir: The base directory of the dataset sources, by default it uses
a predefined CNS path (see DEFAULT_DATASET_DIR).
config: A dictionary with dataset configuration. If None - will use the
DEFAULT_CONFIG.
Returns:
A `Dataset` namedtuple.
Raises:
ValueError: if `split_name` is not a valid train/test split.
"""
if not dataset_dir:
dataset_dir = DEFAULT_DATASET_DIR
if not config:
config = DEFAULT_CONFIG
if split_name not in config['splits']:
raise ValueError('split name %s was not recognized.' % split_name)
logging.info('Using %s dataset split_name=%s dataset_dir=%s', config['name'],
split_name, dataset_dir)
# Ignores the 'image/height' feature.
zero = tf.zeros([1], dtype=tf.int64)
keys_to_features = {
'image/encoded':
tf.io.FixedLenFeature((), tf.string, default_value=''),
'image/format':
tf.io.FixedLenFeature((), tf.string, default_value='png'),
'image/width':
tf.io.FixedLenFeature([1], tf.int64, default_value=zero),
'image/orig_width':
tf.io.FixedLenFeature([1], tf.int64, default_value=zero),
'image/class':
tf.io.FixedLenFeature([config['max_sequence_length']], tf.int64),
'image/unpadded_class':
tf.io.VarLenFeature(tf.int64),
'image/text':
tf.io.FixedLenFeature([1], tf.string, default_value=''),
}
items_to_handlers = {
'image':
slim.tfexample_decoder.Image(
shape=config['image_shape'],
image_key='image/encoded',
format_key='image/format'),
'label':
slim.tfexample_decoder.Tensor(tensor_key='image/class'),
'text':
slim.tfexample_decoder.Tensor(tensor_key='image/text'),
'num_of_views':
_NumOfViewsHandler(
width_key='image/width',
original_width_key='image/orig_width',
num_of_views=config['num_of_views'])
}
decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
charset_file = os.path.join(dataset_dir, config['charset_filename'])
charset = read_charset(charset_file)
file_pattern = os.path.join(dataset_dir,
config['splits'][split_name]['pattern'])
return slim.dataset.Dataset(
data_sources=file_pattern,
reader=tf.compat.v1.TFRecordReader,
decoder=decoder,
num_samples=config['splits'][split_name]['size'],
items_to_descriptions=config['items_to_descriptions'],
# additional parameters for convenience.
charset=charset,
charset_file=charset_file,
image_shape=config['image_shape'],
num_char_classes=len(charset),
num_of_views=config['num_of_views'],
max_sequence_length=config['max_sequence_length'],
null_code=config['null_code'])