Skip to content

Latest commit

 

History

History
985 lines (720 loc) · 31.1 KB

quickstart.rst

File metadata and controls

985 lines (720 loc) · 31.1 KB

Quick Start

Installation

  • For x86 Linux,

pip install tensorcircuit-ng

is in general enough. Either pip from conda or other python env managers is fine.

Since there are many optional packages for various features, the users may need to install more pip packages when required.

For Nvidia GPU, please refer to the GPU aware installation guide of corresponding machine learning frameworks: TensorFlow, Jax, or PyTorch.

Docker is also recommended (especially Linux + Nvidia GPU setup):

sudo docker run -it --network host --gpus all tensorcircuit/tensorcircuit.

For more details on docker setup, please refer to docker readme.

Overall, the installation of TensorCircuit-NG is simple, since it is purely in Python and hence very portable. As long as the users can take care of the installation of ML frameworks on the corresponding system, TensorCircuit-NG will work as expected.

To debug the installation issue or report bugs, please check the environment information by tc.about().

Note

We also provide a nightly build of tensorcircuit via PyPI which can be accessed by pip uninstall tensorcircuit-ng, then pip install tensorcircuit-nightly

Circuit Object

The basic object for TensorCircuit-NG is tc.Circuit.

Initialize the circuit with the number of qubits c=tc.Circuit(n).

Input States:

The default input function for the circuit is \vert 0^n \rangle. One can change this to other wavefunctions by directly feeding the inputs state vectors w: c=tc.Circuit(n, inputs=w).

One can also feed matrix product states as input states for the circuit, but we leave MPS/MPO usage for future sections.

Quantum Gates:

We can apply gates on circuit objects. For example, using c.H(1) or c.rx(2, theta=0.2), we can apply Hadamard gate on qubit 1 (0-based) or apply Rx gate on qubit 2 as e^{-i\theta/2 X}.

The same rule also applies to multi-qubit gates, such as c.cnot(0, 1).

There are also highly customizable gates, two instances are:

  • c.exp1(0, 1, unitary=m, theta=0.2) which is for the exponential gate e^{i\theta m} of any matrix m as long as m^2=1.
  • c.any(0, 1, unitary=m) which is for applying the unitary gate m on the circuit.

These two examples are flexible and support gates on any number of qubits.

Measurements and Expectations:

The most straightforward way to get the output from the circuit object is by getting the output wavefunction in vector form as c.state().

For bitstring sampling, we have c.perfect_sampling() which returns the bitstring and the corresponding probability amplitude.

To measure part of the qubits, we can use c.measure(0, 1), if we want to know the corresponding probability of the measurement output, try c.measure(0, 1, with_prob=True). The measure API is by default non-jittable, but we also have a jittable version as c.measure_jit(0, 1).

The measurement and sampling utilize advanced algorithms based on tensornetwork and thus require no knowledge or space for the full wavefunction.

See the example below:

K = tc.set_backend("jax")
@K.jit
def sam(key):
    K.set_random_state(key)
    n = 50
    c = tc.Circuit(n)
    for i in range(n):
        c.H(i)
    return c.perfect_sampling()

sam(jax.random.PRNGKey(42))
sam(jax.random.PRNGKey(43))

To compute expectation values for local observables, we have c.expectation([tc.gates.z(), [0]], [tc.gates.z(), [1]]) for \langle Z_0Z_1 \rangle or c.expectation([tc.gates.x(), [0]]) for \langle X_0 \rangle.

This expectation API is rather flexible, as one can measure an m on several qubits as c.expectation([m, [0, 1, 2]]).

We can also extract the unitary matrix underlying the whole circuit as follows:

>>> n = 2
>>> c = tc.Circuit(n, inputs=tc.backend.eye(2**n))
>>> c.X(1)
>>> tc.backend.reshapem(c.state())
array([[0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
    [1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
    [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
    [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j]], dtype=complex64)

Circuit Transformations:

We currently support transform tc.Circuit from and to Qiskit QuantumCircuit object.

Export to Qiskit (possible for further hardware experiment, compiling, and visualization): c.to_qiskit().

Import from Qiskit: c = tc.Circuit.from_qiskit(QuantumCircuit, n). Parameterized Qiskit circuit is supported by passing the parameters to the binding_parameters argument of the from_qiskit function, similar to the assign_parameters function in Qiskit.

Circuit Visualization:

c.vis_tex() can generate tex code for circuit visualization based on LaTeX quantikz package.

There are also some automatic pipeline helper functions to directly generate figures from tex code, but they require extra installations in the environment.

render_pdf(tex) function requires full installation of LaTeX locally. And in the Jupyter environment, we may prefer render_pdf(tex, notebook=True) to return jpg figures, which further require wand magicwand library installed, see here.

Or since we can transform tc.Circuit into QuantumCircuit easily, we have a simple pipeline to first transform tc.Circuit into Qiskit and then call the visualization built in Qiskit. Namely, we have c.draw() API.

Circuit Intermediate Representation:

TensorCircuit provides its own circuit IR as a python list of dicts. This IR can be further utilized to run compiling, generate serialization qasm, or render circuit figures.

The IR is given as a list, each element is a dict containing information on one gate that is applied to the circuit. Note gate attr in the dict is a python function that returns the gate's node.

>>> c = tc.Circuit(2)
>>> c.cnot(0, 1)
>>> c.crx(1, 0, theta=0.2)
>>> c.to_qir()
[{'gate': cnot, 'index': (0, 1), 'name': 'cnot', 'split': None}, {'gate': crx, 'index': (1, 0), 'name': 'crx', 'split': None, 'parameters': {'theta': 0.2}}]

We can also create new copied circuit via c.copy() which internally utilize the qir.

Programming Paradigm

The most common case and the most typical programming paradigm for TensorCircuit-NG are to evaluate the circuit output and the corresponding quantum gradients, which is common in variational quantum algorithms.

import tensorcircuit as tc

K = tc.set_backend("tensorflow")

n = 1


def loss(params, n):
    c = tc.Circuit(n)
    for i in range(n):
        c.rx(i, theta=params[0, i])
    for i in range(n):
        c.rz(i, theta=params[1, i])
    loss = 0.0
    for i in range(n):
        loss += c.expectation([tc.gates.z(), [i]])
    return K.real(loss)


vgf = K.jit(K.value_and_grad(loss), static_argnums=1)
params = K.implicit_randn([2, n])
print(vgf(params, n))  # get the quantum loss and the gradient

Also for a non-quantum example (linear regression) demonstrating the backend agnostic feature, variables with pytree support, AD/jit/vmap usage, and variational optimization loops. Please refer to the example script: linear regression example. This example might be more friendly to the machine learning community since it is purely classical while also showcasing the main features and paradigms of tensorcircuit-ng.

If the user has no intention to maintain the application code in a backend agnostic fashion, the API for ML frameworks can be more handily used and interleaved with the TensorCircuit API.

import tensorcircuit as tc
import tensorflow as tf

K = tc.set_backend("tensorflow")

n = 1


def loss(params, n):
    c = tc.Circuit(n)
    for i in range(n):
        c.rx(i, theta=params[0, i])
    for i in range(n):
        c.rz(i, theta=params[1, i])
    loss = 0.0
    for i in range(n):
        loss += c.expectation([tc.gates.z(), [i]])
    return tf.math.real(loss)

def vgf(params, n):
    with tf.GradientTape() as tape:
        tape.watch(params)
        l = loss(params, n)
    return l, tape.gradient(l, params)

vgf = tf.function(vgf)
params = tf.random.normal([2, n])
print(vgf(params, n))  # get the quantum loss and the gradient

Automatic Differentiation, JIT, and Vectorized Parallelism

For concepts of AD, JIT and VMAP, please refer to Jax documentation .

The related API design in TensorCircuit-NG closely follows the functional programming design pattern in Jax with some slight differences. So we strongly recommend users learn some basics about Jax no matter which ML backend they intend to use.

AD Support:

Automatic Differentiation (AD) is crucial for quantum circuit optimization. TensorCircuit-NG supports various differentiation operations:

  • Gradients: First-order derivatives
  • Vector-Jacobian products (vjps): Efficient backward-mode differentiation
  • Jacobian-vector products (jvps): Efficient forward-mode differentiation
  • Natural gradients: Geometry-aware optimization
  • Jacobians: Full derivative matrices
  • Hessians: Second-order derivatives

Example of gradient computation:

import tensorcircuit as tc
K = tc.set_backend("tensorflow")

def circuit(params):
    c = tc.Circuit(2)
    c.rx(0, theta=params[0])
    c.ry(1, theta=params[1])
    c.cnot(0, 1)
    return K.real(c.expectation([tc.gates.z(), [0]]))

# Get value and gradient
params = K.ones([2])
value, grad = K.value_and_grad(circuit)(params)
print("Value:", value)
print("Gradient:", grad)

# Compute Hessian
hess = K.hessian(circuit)(params)
print("Hessian:", hess)

JIT Support:

Just-In-Time (JIT) compilation significantly accelerates quantum circuit simulation by optimizing the computation graph. Key points:

  • Use JIT for functions that will be called multiple times
  • JIT compilation has some overhead, so it's most beneficial for repeated executions
  • Ensure input shapes and types are consistent to avoid recompilation
  • The input and output of the functions are all tensors, except static inputs.

Example of JIT acceleration:

import time

# Define a quantum circuit function
def noisy_circuit(key):
    c = tc.Circuit(5)
    for i in range(5):
        c.h(i)
        c.depolarizing(i, px=0.01, py=0.01, pz=0.01, status=key[i])
    return c.expectation_ps(z=[0])

# Compare performance with and without JIT
start = time.time()
for _ in range(100):
    noisy_circuit(K.ones([5]))
print("Without JIT:", time.time() - start)

jitted_circuit = K.jit(noisy_circuit)
start = time.time()
for _ in range(100):
    jitted_circuit(K.ones([5]))
print("With JIT:", time.time() - start)

VMAP Support:

Vectorized mapping (vmap) enables parallel evaluation across multiple inputs or parameters:

  • Batch processing of quantum circuit input wavefunctions
  • Batch processing quantum circuit structure
  • Parallel parameter optimization
  • Efficient Monte Carlo sampling for noise simulation
  • Vectorized measurement operations

Example of vmap for parallel circuit evaluation:

# Define a parameterized circuit
def param_circuit(params):
    c = tc.Circuit(2)
    c.rx(0, theta=params[0])
    c.ry(1, theta=params[1])
    return K.real(c.expectation([tc.gates.z(), [0]]))

# Create batch of parameters
batch_params = K.ones([10, 2])

# Vectorize the circuit evaluation
vmap_circuit = K.vmap(param_circuit)
results = vmap_circuit(batch_params)

For more advanced usage patterns and detailed examples of vmap, refer to our vmap tutorial.

Backend Agnosticism

TensorCircuit-NG supports TensorFlow, Jax, and PyTorch backends. We recommend using TensorFlow or Jax backend since PyTorch lacks advanced jit and vmap features.

The backend can be set as K=tc.set_backend("jax") and K is the backend with a full set of APIs as a conventional ML framework, which can also be accessed by tc.backend.

>>> import tensorcircuit as tc
>>> K = tc.set_backend("tensorflow")
>>> K.ones([2,2])
<tf.Tensor: shape=(2, 2), dtype=complex64, numpy=
array([[1.+0.j, 1.+0.j],
    [1.+0.j, 1.+0.j]], dtype=complex64)>
>>> tc.backend.eye(3)
<tf.Tensor: shape=(3, 3), dtype=complex64, numpy=
array([[1.+0.j, 0.+0.j, 0.+0.j],
    [0.+0.j, 1.+0.j, 0.+0.j],
    [0.+0.j, 0.+0.j, 1.+0.j]], dtype=complex64)>
>>> tc.set_backend("jax")
<tensorcircuit.backends.jax_backend.JaxBackend object at 0x7fb00e0fd6d0>
>>> tc.backend.name
'jax'
>>> tc.backend.implicit_randu()
WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)
DeviceArray([0.7400521], dtype=float32)

The supported APIs in the backend come from two sources, one part is implemented in TensorNetwork package and the other part is implemented in TensorCircuit package. To see all the backend agnostic APIs, try:

>>> [s for s in dir(tc.backend) if not s.startswith("_")]
['abs',
'acos',
'acosh',
'addition',
'adjoint',
'arange',
'argmax',
'argmin',
'asin',
'asinh',
'atan',
'atan2',
'atanh',
'broadcast_left_multiplication',
'broadcast_right_multiplication',
'cast',
'cholesky',
'concat',
'cond',
'conj',
'convert_to_tensor',
'coo_sparse_matrix',
'coo_sparse_matrix_from_numpy',
'copy',
'cos',
'cosh',
'cumsum',
'deserialize_tensor',
'device',
'device_move',
'diagflat',
'diagonal',
'divide',
'dtype',
'eigh',
'eigs',
'eigsh',
'eigsh_lanczos',
'eigvalsh',
'einsum',
'eps',
'exp',
'expm',
'eye',
'from_dlpack',
'g',
'gather1d',
'get_random_state',
'gmres',
'grad',
'hessian',
'i',
'imag',
'implicit_randc',
'implicit_randn',
'implicit_randu',
'index_update',
'inv',
'is_sparse',
'is_tensor',
'item',
'jacbwd',
'jacfwd',
'jacrev',
'jit',
'jvp',
'kron',
'left_shift',
'log',
'matmul',
'max',
'mean',
'min',
'minor',
'mod',
'multiply',
'name',
'norm',
'numpy',
'one_hot',
'onehot',
'ones',
'optimizer',
'outer_product',
'pivot',
'power',
'probability_sample',
'qr',
'randn',
'random_split',
'random_uniform',
'real',
'relu',
'reshape',
'reshape2',
'reshapem',
'reverse',
'right_shift',
'rq',
'scatter',
'searchsorted',
'serialize_tensor',
'set_random_state',
'shape_concat',
'shape_prod',
'shape_tensor',
'shape_tuple',
'sigmoid',
'sign',
'sin',
'sinh',
'size',
'sizen',
'slice',
'softmax',
'solve',
'sparse_dense_matmul',
'sparse_shape',
'sqrt',
'sqrtmh',
'stack',
'stateful_randc',
'stateful_randn',
'stateful_randu',
'std',
'stop_gradient',
'subtraction',
'sum',
'svd',
'switch',
'tan',
'tanh',
'tensordot',
'tile',
'to_dense',
'to_dlpack',
'trace',
'transpose',
'tree_flatten',
'tree_map',
'tree_unflatten',
'unique_with_counts',
'value_and_grad',
'vectorized_value_and_grad',
'vjp',
'vmap',
'vvag',
'zeros']

Switch the Dtype

TensorCircuit-NG supports simulation using 32/64 bit precession. The default dtype is 32-bit as "complex64". Change this by tc.set_dtype("complex128").

tc.dtypestr always returns the current dtype string: either "complex64" or "complex128". Accordingly, tc.rdtypestr always returns the current real dtype string: either "float32" or "float64".

Setup the Contractor

TensorCircuit-NG is a tensornetwork contraction-based quantum circuit simulator. A contractor is for searching for the optimal contraction path of the circuit tensornetwork.

There are various advanced contractors provided by third-party packages, such as opt-einsum and cotengra.

opt-einsum is shipped with TensorNetwork package. To use cotengra, one needs to pip install it; kahypar is also recommended to install with cotengra.

Some setup cases:

import tensorcircuit as tc

# 1. cotengra contractors, have better and consistent performance for large circuit simulation
import cotengra as ctg

optr = ctg.ReusableHyperOptimizer(
    methods=["greedy", "kahypar"],
    parallel=True,
    minimize="flops",
    max_time=120,
    max_repeats=4096,
    progbar=True,
)
tc.set_contractor("custom", optimizer=optr, preprocessing=True)
# by preprocessing set as True, tensorcircuit will automatically merge all single-qubit gates into entangling gates

# 2.  RandomGreedy contractor
tc.set_contractor("custom_stateful", optimizer=oem.RandomGreedy, max_time=60, max_repeats=128, minimize="size")

# 3. state simulator like contractor provided by tensorcircuit, maybe better when there is ring topology for two-qubit gate layout
tc.set_contractor("plain-experimental")

For advanced configurations on cotengra contractors, please refer to cotengra doc .

Setup in Function or Context Level

Beside global level setup, we can also setup the backend, the dtype, and the contractor at the function level or context manager level:

with tc.runtime_backend("tensorflow"):
    with tc.runtime_dtype("complex128"):
        m = tc.backend.eye(2)
n = tc.backend.eye(2)
print(m, n) # m is tf tensor while n is numpy array

@tc.set_function_backend("tensorflow")
@tc.set_function_dtype("complex128")
def f():
    return tc.backend.eye(2)
print(f()) # complex128 tf tensor

Noisy Circuit Simulation

Monte Carlo State Simulator:

For the Monte Carlo trajectory noise simulator, the unitary Kraus channel can be handled easily. TensorCircuit-NG also supports fully jittable and differentiable general Kraus channel Monte Carlo simulation, though.

def noisecircuit(random):
    c = tc.Circuit(1)
    c.x(0)
    c.thermalrelaxation(
        0,
        t1=300,
        t2=400,
        time=1000,
        method="ByChoi",
        excitedstatepopulation=0,
        status=random,
    )
    return c.expectation_ps(z=[0])


K = tc.set_backend("tensorflow")
noisec_vmap = K.jit(K.vmap(noisecircuit, vectorized_argnums=0))
nmc = 10000
random = K.implicit_randu(nmc)
valuemc = K.mean(K.numpy(noisec_vmap(random)))
# (0.931+0j)

Density Matrix Simulator:

Density matrix simulator tc.DMCircuit simulates the noise in a full form, but takes twice qubits to do noiseless simulation. The API is the same as tc.Circuit.

def noisecircuitdm():
    dmc = tc.DMCircuit(1)
    dmc.x(0)
    dmc.thermalrelaxation(
        0, t1=300, t2=400, time=1000, method="ByChoi", excitedstatepopulation=0
    )
    return dmc.expectation_ps(z=[0])


K = tc.set_backend("tensorflow")
noisec_jit = K.jit(noisecircuitdm)
valuedm = noisec_jit()
# (0.931+0j)

Experiment with quantum errors:

Multiple quantum errors can be added on circuit.

c = tc.Circuit(1)
c.x(0)
c.thermalrelaxation(
    0, t1=300, t2=400, time=1000, method="ByChoi", excitedstatepopulation=0
)
c.generaldepolarizing(0, p=0.01, num_qubits=1)
c.phasedamping(0, gamma=0.2)
c.amplitudedamping(0, gamma=0.25, p=0.2)
c.reset(0)
c.expectation_ps(z=[0])

Experiment with readout error:

Readout error can be added in experiments for sampling and expectation value calculation.

c = tc.Circuit(3)
c.X(0)
readout_error = []
readout_error.append([0.9, 0.75])  # readout error of qubit 0   p0|0=0.9, p1|1=0.75
readout_error.append([0.4, 0.7])  # readout error of qubit 1
readout_error.append([0.7, 0.9])  # readout error of qubit 2
value = c.sample_expectation_ps(z=[0, 1, 2], readout_error=readout_error)
# tf.Tensor(0.039999977, shape=(), dtype=float32)
instances = c.sample(
    batch=3,
    allow_state=True,
    readout_error=readout_error,
    random_generator=tc.backend.get_random_state(42),
    format_="sample_bin"
)
# tf.Tensor(
# [[1 0 0]
# [1 0 0]
# [1 0 1]], shape=(3, 3), dtype=int32)

MPS and MPO

TensorCircuit-NG has its class for MPS and MPO originally defined in TensorNetwork as tc.QuVector, tc.QuOperator.

tc.QuVector can be extracted from tc.Circuit as the tensor network form for the output state (uncontracted) by c.quvector().

The QuVector forms a wavefunction w, which can also be fed into Circuit as the inputs state as c=tc.Circuit(n, mps_inputs=w).

  • MPS as input state for circuit

The MPS/QuVector representation of the input state has a more efficient and compact form.

n = 3
nodes = [tc.gates.Gate(np.array([0.0, 1.0])) for _ in range(n)]
mps = tc.quantum.QuVector([nd[0] for nd in nodes])
c = tc.Circuit(n, mps_inputs=mps)
c.x(0)
c.expectation_ps(z=[0])
# 1.0
  • MPS as (uncomputed) output state for circuit

For example, a quick way to calculate the wavefunction overlap without explicitly computing the state amplitude is given as below:

>>> c = tc.Circuit(3)
>>> [c.H(i) for i in range(3)]
[None, None, None]
>>> c.cnot(0, 1)
>>> c2 = tc.Circuit(3)
>>> [c2.H(i) for i in range(3)]
[None, None, None]
>>> c2.cnot(1, 0)
>>> q = c.quvector()
>>> q2 = c2.quvector().adjoint()
>>> (q2@q).eval_matrix()
array([[0.9999998+0.j]], dtype=complex64)
  • MPO as the gate on the circuit

Instead of a common quantum gate in matrix/node format, we can directly apply a gate in MPO/QuOperator format.

>>> x0, x1 = tc.gates.x(), tc.gates.x()
>>> mpo = tc.quantum.QuOperator([x0[0], x1[0]], [x0[1], x1[1]])
>>> c = tc.Circuit(2)
>>> c.mpo(0, 1, mpo=mpo)
>>> c.state()
array([0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j], dtype=complex64)

The representative gate defined in MPO format is the multicontrol gate.

  • MPO as the operator for expectation evaluation on a circuit

We can also measure operator expectation on the circuit output state where the operator is in MPO/QuOperator format.

>>> z0, z1 = tc.gates.z(), tc.gates.z()
>>> mpo = tc.quantum.QuOperator([z0[0], z1[0]], [z0[1], z1[1]])
>>> c = tc.Circuit(2)
>>> c.X(0)
>>> tc.templates.measurements.mpo_expectation(c, mpo)
-1.0

Interfaces

PyTorch Interface to Hybrid with PyTorch Modules:

As we have mentioned in the backend section, the PyTorch backend may lack advanced features. This doesn't mean we cannot hybrid the advanced circuit module with PyTorch neural module. We can run the quantum function on TensorFlow or Jax backend while wrapping it with a Torch interface.

import tensorcircuit as tc
from tensorcircuit.interfaces import torch_interface
import torch

tc.set_backend("tensorflow")


def f(params):
    c = tc.Circuit(1)
    c.rx(0, theta=params[0])
    c.ry(0, theta=params[1])
    return c.expectation([tc.gates.z(), [0]])


f_torch = torch_interface(f, jit=True)

a = torch.ones([2], requires_grad=True)
b = f_torch(a)
c = b ** 2
c.backward()

print(a.grad)

For a GPU/CPU, torch/tensorflow, quantum/classical hybrid machine learning pipeline enabled by tensorcircuit, see example script.

There is also a more flexible torch interface that support static non-tensor inputs as keyword arguments, which can be utilized as below:

def f(a, i):
    s = 0.
    for _ in range(i):
        s += a
    return s

f_torch = tc.interfaces.torch_interface_kws(f)
f_torch(torch.ones([2]), i=3)

We also provider wrapper of quantum function for torch module as :py:meth:`tensorcircuit.TorchLayer` alias to :py:meth:`tensorcircuit.torchnn.QuantumNet`.

For TorchLayer, use_interface=True is by default, which natively allow the quantum function defined on other tensorcircuit backends, such as jax or tf for speed consideration.

TorchLayer can process multiple input arguments as multiple function inputs, following torch practice.

n = 3
p = 0.1
K = tc.backend
torchb = tc.get_backend("pytorch")

def f(state, noise, weights):
    c = tc.Circuit(n, inputs=state)
    for i in range(n):
        c.rz(i, theta=weights[i])
    for i in range(n):
        c.depolarizing(i, px=p, py=p, pz=p, status=noise[i])
    return K.real(c.expectation_ps(x=[0]))

layer = tc.TorchLayer(f, [n], use_vmap=True, vectorized_argnums=[0, 1])
state = torchb.ones([2, 2**n]) / 2 ** (n / 2)
noise = 0.2 * torchb.ones([2, n], dtype="float32")
l = layer(state,noise)
lsum = torchb.sum(l)
print(l)
lsum.backward()
for p in layer.parameters():
    print(p.grad)

TensorFlow interfaces:

Similar rules apply similar as torch interface. The interface can even be used within jit environment outside. See :py:meth:`tensorcircuit.interfaces.tensorflow.tensorflow_interface`.

We also provider enable_dlpack=True option in torch and tf interfaces, which allow the tensor transformation happen without memory transfer via dlpack, higher version of tf or torch package required.

We also provider wrapper of quantum function for keras layer as :py:meth:`tensorcircuit.KerasLayer` alias to :py:meth:`tensorcircuit.keras.KerasLayer`.

KerasLayer can process multiple input arguments with the input as a dict, following the common keras practice, see example below.

def f(inputs, weights):
    state = inputs["state"]
    noise = inputs["noise"]
    c = tc.Circuit(n, inputs=state)
    for i in range(n):
        c.rz(i, theta=weights[i])
    for i in range(n):
        c.depolarizing(i, px=p, py=p, pz=p, status=noise[i])
    return K.real(c.expectation_ps(x=[0]))

layer = tc.KerasLayer(f, [n])
v = {"state": K.ones([1, 2**n]) / 2 ** (n / 2), "noise": 0.2 * K.ones([1, n])}
with tf.GradientTape() as tape:
    l = layer(v)
grad = tape.gradient(l, layer.trainable_variables)

JAX interfaces:

TensorCircuit-NG also newly introduces JAX interface to seamlessly integrate with JAX's ecosystem. This allows you to use JAX's powerful features like automatic differentiation, JIT compilation, and vectorization with quantum circuits or functions running on any backend.

Basic usage with JAX interface:

import tensorcircuit as tc
import jax
import jax.numpy as jnp

# Set non-jax backend
tc.set_backend("tensorflow")

def circuit(params):
    c = tc.Circuit(2)
    c.rx(0, theta=params[0])
    c.ry(1, theta=params[1])
    c.cnot(0, 1)
    return tc.backend.real(c.expectation_ps(z=[1]))

# Wrap the circuit with JAX interface
jax_circuit = tc.interfaces.jax_interface(circuit, jit=True)

# Now you can use JAX features
params = jnp.ones(2)
value, grad = jax.value_and_grad(jax_circuit)(params)
print("Value:", value)
print("Gradient:", grad)

Some advanced features:

  1. DLPack support for efficient tensor conversion:
# Enable DLPack for zero-copy tensor conversion
jax_circuit = tc.interfaces.jax_interface(circuit,
                                        jit=True,
                                        enable_dlpack=True)
  1. Explicit output shape specification for better performance:
# Specify output shape and dtype
jax_circuit = tc.interfaces.jax_interface(circuit,
                                        jit=True,
                                        output_shape=(1,),
                                        output_dtype=jnp.float32)
  1. Multiple outputs support:
def multi_output_circuit(params):
c = tc.Circuit(2)
c.rx(0, theta=params[0])
c.ry(1, theta=params[1])
z0 = c.expectation([tc.gates.z(), [0]])
z1 = c.expectation([tc.gates.z(), [1]])
return tc.backend.real(z0), tc.backend.real(z1)

jax_circuit = tc.interfaces.jax_interface(multi_output_circuit,
                                        jit=True,
                                        output_shape=[[], []],
                                        output_dtype=[jnp.float32, jnp.float32])
# Now you can use JAX features
params = jnp.ones(2)
value, grad = jax.value_and_grad(tc.utils.append(jax_circuit, sum))(params)

Scipy Interface to Utilize Scipy Optimizers:

Automatically transform quantum functions as scipy-compatible values and grad functions as provided for scipy interface with jac=True.

n = 3

def f(param):
    c = tc.Circuit(n)
    for i in range(n):
        c.rx(i, theta=param[0, i])
        c.rz(i, theta=param[1, i])
    loss = c.expectation(
        [
            tc.gates.y(),
            [
                0,
            ],
        ]
    )
    return tc.backend.real(loss)

f_scipy = tc.interfaces.scipy_optimize_interface(f, shape=[2, n])
r = optimize.minimize(f_scipy, np.zeros([2 * n]), method="L-BFGS-B", jac=True)

Templates as Shortcuts

Measurements:

  • Ising type Hamiltonian defined on a general graph

See :py:meth:`tensorcircuit.templates.measurements.spin_glass_measurements`

  • Heisenberg Hamiltonian on a general graph with possible external fields

See :py:meth:`tensorcircuit.templates.measurements.heisenberg_measurements`

Circuit Blocks:

c = tc.Circuit(4)
c = tc.templates.blocks.example_block(c, tc.backend.ones([16]))
statics/example_block.png
c = tc.Circuit(4)
c = tc.templates.blocks.Bell_pair_block(c)
statics/bell_pair_block.png