forked from pytorch/PiPPy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_train.py
172 lines (136 loc) · 5.92 KB
/
example_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright (c) Meta Platforms, Inc. and affiliates
import torch
from typing import Any
class MyNetworkBlock(torch.nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.lin = torch.nn.Linear(in_dim, out_dim)
def forward(self, x):
x = self.lin(x)
x = torch.relu(x)
return x
class MyNetwork(torch.nn.Module):
def __init__(self, in_dim, layer_dims):
super().__init__()
prev_dim = in_dim
for i, dim in enumerate(layer_dims):
setattr(self, f"layer{i}", MyNetworkBlock(prev_dim, dim))
prev_dim = dim
self.num_layers = len(layer_dims)
# 10 output classes
self.output_proj = torch.nn.Linear(layer_dims[-1], 10)
def forward(self, x):
for i in range(self.num_layers):
x = getattr(self, f"layer{i}")(x)
return self.output_proj(x)
mn = MyNetwork(512, [512, 1024, 256])
from pippy.IR import Pipe
pipe = Pipe.from_tracing(mn)
print(pipe)
print(pipe.split_gm.submod_0)
from pippy.IR import annotate_split_points, PipeSplitWrapper
annotate_split_points(
mn,
{
"layer0": PipeSplitWrapper.SplitPoint.END,
"layer1": PipeSplitWrapper.SplitPoint.END,
},
)
pipe = Pipe.from_tracing(mn)
print(" pipe ".center(80, "*"))
print(pipe)
print(" submod0 ".center(80, "*"))
print(pipe.split_gm.submod_0)
print(" submod1 ".center(80, "*"))
print(pipe.split_gm.submod_1)
print(" submod2 ".center(80, "*"))
print(pipe.split_gm.submod_2)
# To run a distributed training job, we must launch the script in multiple
# different processes. We are using `torchrun` to do so in this example.
# `torchrun` defines two environment variables: `LOCAL_RANK` and `WORLD_SIZE`,
# which represent the index of this process within the set of processes and
# the total number of processes, respectively.
#
# To learn more about `torchrun`, see
# https://pytorch.org/docs/stable/elastic/run.html
import os
local_rank = int(os.environ["LOCAL_RANK"])
world_size = int(os.environ["WORLD_SIZE"])
# PiPPy uses the PyTorch RPC interface. To use RPC, we must call `init_rpc`
# and inform the RPC framework of this process's rank and the total world
# size. We can directly pass values `torchrun` provided.`
#
# To learn more about the PyTorch RPC framework, see
# https://pytorch.org/docs/stable/rpc.html
import torch.distributed.rpc as rpc
rpc.init_rpc(f"worker{local_rank}", rank=local_rank, world_size=world_size)
# PiPPy relies on the concept of a "driver" process. The driver process
# should be a single process within the RPC group that instantiates the
# PipelineDriver and issues commands on that object. The other processes
# in the RPC group will receive commands from this process and execute
# the pipeline stages
if local_rank == 0:
from pippy.PipelineDriver import PipelineDriverFillDrain
from pippy.microbatch import TensorChunkSpec
# LossWrapper is a convenient base class you can use to compose your model
# with the desired loss function for the purpose of pipeline parallel training.
# Since the loss is executed as part of the pipeline, it cannot reside in the
# training loop, so you must embed it like this
from pippy.IR import LossWrapper
class ModelLossWrapper(LossWrapper):
def forward(self, x, target):
return self.loss_fn(self.module(x), target)
# TODO: mean reduction
loss_wrapper = ModelLossWrapper(
module=mn, loss_fn=torch.nn.MSELoss(reduction="sum")
)
# Instantiate the `Pipe` similarly to before, but with two differences:
# 1) We pass in the `loss_wrapper` module to include the loss in the
# computation
# 2) We specify `output_loss_value_spec`. This is a data structure
# that should mimic the structure of the output of LossWrapper
# and has a True value in the position where the loss value will
# be. Since LossWrapper returns just the loss, we just pass True
pipe = Pipe.from_tracing(loss_wrapper, output_loss_value_spec=True)
# We now have two args: `x` and `target`, so specify batch dimension
# for both.
args_chunk_spec: Any = (TensorChunkSpec(0), TensorChunkSpec(0))
kwargs_chunk_spec: Any = {}
# The output of our model is now a `loss` value, which is a scalar tensor.
# PiPPy's default is to concatenate outputs, but that will not
# work with a scalar tensor. So we use a LossReducer instead
# to merge together the loss values from each microbatch into a
# single unified loss.
from pippy.microbatch import LossReducer
output_chunk_spec: Any = LossReducer(0.0, lambda a, b: a + b)
# Instantiate the driver as usual.
driver = PipelineDriverFillDrain(
pipe,
64,
world_size=world_size,
args_chunk_spec=args_chunk_spec,
kwargs_chunk_spec=kwargs_chunk_spec,
output_chunk_spec=output_chunk_spec,
)
# Instantiate remote Adam optimizers. `instantiate_optimizer` takes the
# optimizer class as the first argument, then additional arguments to that
# optimizer. Note that the `parameters` argument is omitted; PiPPy will
# populate that value for each pipeline stage for you.
optimizer = driver.instantiate_optimizer(torch.optim.Adam)
# Also instantiate a learning rate scheduler. Note that the `optimizer` argument is
# omitted; PiPPy will populate that argument for each pipeline stage
lr_scheduler = driver.instantiate_lr_scheduler(
torch.optim.lr_scheduler.LinearLR, total_iters=100
)
N_TRAINING_STEPS = 100
x = torch.randn(512, 512)
target = torch.randn(512, 10)
for i in range(N_TRAINING_STEPS):
optimizer.zero_grad()
pipe_loss = driver(x, target)
optimizer.step()
lr_scheduler.step()
log_info = f" Training step {i}, loss: {pipe_loss}, LR: {lr_scheduler.get_last_lr()} "
print(log_info.center(80, "*"))
print(" Pipeline parallel model ran successfully! ".center(80, "*"))
rpc.shutdown()