forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathIndexPQ.h
188 lines (133 loc) · 5.29 KB
/
IndexPQ.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_INDEX_PQ_H
#define FAISS_INDEX_PQ_H
#include <stdint.h>
#include <vector>
#include "Index.h"
#include "ProductQuantizer.h"
#include "PolysemousTraining.h"
namespace faiss {
/** Index based on a product quantizer. Stored vectors are
* approximated by PQ codes. */
struct IndexPQ: Index {
/// The product quantizer used to encode the vectors
ProductQuantizer pq;
/// Codes. Size ntotal * pq.code_size
std::vector<uint8_t> codes;
/** Constructor.
*
* @param d dimensionality of the input vectors
* @param M number of subquantizers
* @param nbits number of bit per subvector index
*/
IndexPQ (int d, ///< dimensionality of the input vectors
size_t M, ///< number of subquantizers
size_t nbits, ///< number of bit per subvector index
MetricType metric = METRIC_L2);
IndexPQ ();
void train(idx_t n, const float* x) override;
void add(idx_t n, const float* x) override;
void search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels) const override;
void reset() override;
void reconstruct_n(idx_t i0, idx_t ni, float* recons) const override;
void reconstruct(idx_t key, float* recons) const override;
long remove_ids(const IDSelector& sel) override;
/******************************************************
* Polysemous codes implementation
******************************************************/
bool do_polysemous_training; ///< false = standard PQ
/// parameters used for the polysemous training
PolysemousTraining polysemous_training;
/// how to perform the search in search_core
enum Search_type_t {
ST_PQ, ///< asymmetric product quantizer (default)
ST_HE, ///< Hamming distance on codes
ST_generalized_HE, ///< nb of same codes
ST_SDC, ///< symmetric product quantizer (SDC)
ST_polysemous, ///< HE filter (using ht) + PQ combination
ST_polysemous_generalize, ///< Filter on generalized Hamming
};
Search_type_t search_type;
// just encode the sign of the components, instead of using the PQ encoder
// used only for the queries
bool encode_signs;
/// Hamming threshold used for polysemy
int polysemous_ht;
// actual polysemous search
void search_core_polysemous (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const;
/// prepare query for a polysemous search, but instead of
/// computing the result, just get the histogram of Hamming
/// distances. May be computed on a provided dataset if xb != NULL
/// @param dist_histogram (M * nbits + 1)
void hamming_distance_histogram (idx_t n, const float *x,
idx_t nb, const float *xb,
long *dist_histogram);
/** compute pairwise distances between queries and database
*
* @param n nb of query vectors
* @param x query vector, size n * d
* @param dis output distances, size n * ntotal
*/
void hamming_distance_table (idx_t n, const float *x,
int32_t *dis) const;
};
/// statistics are robust to internal threading, but not if
/// IndexPQ::search is called by multiple threads
struct IndexPQStats {
size_t nq; // nb of queries run
size_t ncode; // nb of codes visited
size_t n_hamming_pass; // nb of passed Hamming distance tests (for polysemy)
IndexPQStats () {reset (); }
void reset ();
};
extern IndexPQStats indexPQ_stats;
/** Quantizer where centroids are virtual: they are the Cartesian
* product of sub-centroids. */
struct MultiIndexQuantizer: Index {
ProductQuantizer pq;
MultiIndexQuantizer (int d, ///< dimension of the input vectors
size_t M, ///< number of subquantizers
size_t nbits); ///< number of bit per subvector index
void train(idx_t n, const float* x) override;
void search(
idx_t n, const float* x, idx_t k,
float* distances, idx_t* labels) const override;
/// add and reset will crash at runtime
void add(idx_t n, const float* x) override;
void reset() override;
MultiIndexQuantizer () {}
void reconstruct(idx_t key, float* recons) const override;
};
/** MultiIndexQuantizer where the PQ assignmnet is performed by sub-indexes
*/
struct MultiIndexQuantizer2: MultiIndexQuantizer {
/// M Indexes on d / M dimensions
std::vector<Index*> assign_indexes;
bool own_fields;
MultiIndexQuantizer2 (
int d, size_t M, size_t nbits,
Index **indexes);
MultiIndexQuantizer2 (
int d, size_t nbits,
Index *assign_index_0,
Index *assign_index_1);
void train(idx_t n, const float* x) override;
void search(
idx_t n, const float* x, idx_t k,
float* distances, idx_t* labels) const override;
};
} // namespace faiss
#endif