forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathIndexIVF.h
252 lines (196 loc) · 8.7 KB
/
IndexIVF.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_INDEX_IVF_H
#define FAISS_INDEX_IVF_H
#include <vector>
#include "Index.h"
#include "InvertedLists.h"
#include "Clustering.h"
#include "Heap.h"
namespace faiss {
/** Encapsulates a quantizer object for the IndexIVF
*
* The class isolates the fields that are independent of the storage
* of the lists (especially training)
*/
struct Level1Quantizer {
Index * quantizer; ///< quantizer that maps vectors to inverted lists
size_t nlist; ///< number of possible key values
/**
* = 0: use the quantizer as index in a kmeans training
* = 1: just pass on the training set to the train() of the quantizer
* = 2: kmeans training on a flat index + add the centroids to the quantizer
*/
char quantizer_trains_alone;
bool own_fields; ///< whether object owns the quantizer
ClusteringParameters cp; ///< to override default clustering params
Index *clustering_index; ///< to override index used during clustering
/// Trains the quantizer and calls train_residual to train sub-quantizers
void train_q1 (size_t n, const float *x, bool verbose,
MetricType metric_type);
Level1Quantizer (Index * quantizer, size_t nlist);
Level1Quantizer ();
~Level1Quantizer ();
};
struct IVFSearchParameters {
size_t nprobe; ///< number of probes at query time
size_t max_codes; ///< max nb of codes to visit to do a query
virtual ~IVFSearchParameters () {}
};
/** Index based on a inverted file (IVF)
*
* In the inverted file, the quantizer (an Index instance) provides a
* quantization index for each vector to be added. The quantization
* index maps to a list (aka inverted list or posting list), where the
* id of the vector is stored.
*
* The inverted list object is required only after trainng. If none is
* set externally, an ArrayInvertedLists is used automatically.
*
* At search time, the vector to be searched is also quantized, and
* only the list corresponding to the quantization index is
* searched. This speeds up the search by making it
* non-exhaustive. This can be relaxed using multi-probe search: a few
* (nprobe) quantization indices are selected and several inverted
* lists are visited.
*
* Sub-classes implement a post-filtering of the index that refines
* the distance estimation from the query to databse vectors.
*/
struct IndexIVF: Index, Level1Quantizer {
/// Acess to the actual data
InvertedLists *invlists;
bool own_invlists;
size_t code_size; ///< code size per vector in bytes
size_t nprobe; ///< number of probes at query time
size_t max_codes; ///< max nb of codes to visit to do a query
/// map for direct access to the elements. Enables reconstruct().
bool maintain_direct_map;
std::vector <long> direct_map;
/** The Inverted file takes a quantizer (an Index) on input,
* which implements the function mapping a vector to a list
* identifier. The pointer is borrowed: the quantizer should not
* be deleted while the IndexIVF is in use.
*/
IndexIVF (Index * quantizer, size_t d,
size_t nlist, size_t code_size,
MetricType metric = METRIC_L2);
void reset() override;
/// Trains the quantizer and calls train_residual to train sub-quantizers
void train(idx_t n, const float* x) override;
/// Quantizes x and calls add_with_key
void add(idx_t n, const float* x) override;
/// Sub-classes that encode the residuals can train their encoders here
/// does nothing by default
virtual void train_residual (idx_t n, const float *x);
/** search a set of vectors, that are pre-quantized by the IVF
* quantizer. Fill in the corresponding heaps with the query
* results. search() calls this.
*
* @param n nb of vectors to query
* @param x query vectors, size nx * d
* @param assign coarse quantization indices, size nx * nprobe
* @param centroid_dis
* distances to coarse centroids, size nx * nprobe
* @param distance
* output distances, size n * k
* @param labels output labels, size n * k
* @param store_pairs store inv list index + inv list offset
* instead in upper/lower 32 bit of result,
* instead of ids (used for reranking).
* @param params used to override the object's search parameters
*/
virtual void search_preassigned (idx_t n, const float *x, idx_t k,
const idx_t *assign,
const float *centroid_dis,
float *distances, idx_t *labels,
bool store_pairs,
const IVFSearchParameters *params=nullptr
) const = 0;
/** assign the vectors, then call search_preassign */
virtual void search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const override;
void reconstruct (idx_t key, float* recons) const override;
/** Reconstruct a subset of the indexed vectors.
*
* Overrides default implementation to bypass reconstruct() which requires
* direct_map to be maintained.
*
* @param i0 first vector to reconstruct
* @param ni nb of vectors to reconstruct
* @param recons output array of reconstructed vectors, size ni * d
*/
void reconstruct_n(idx_t i0, idx_t ni, float* recons) const override;
/** Similar to search, but also reconstructs the stored vectors (or an
* approximation in the case of lossy coding) for the search results.
*
* Overrides default implementation to avoid having to maintain direct_map
* and instead fetch the code offsets through the `store_pairs` flag in
* search_preassigned().
*
* @param recons reconstructed vectors size (n, k, d)
*/
void search_and_reconstruct (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels,
float *recons) const override;
/** Reconstruct a vector given the location in terms of (inv list index +
* inv list offset) instead of the id.
*
* Useful for reconstructing when the direct_map is not maintained and
* the inv list offset is computed by search_preassigned() with
* `store_pairs` set.
*/
virtual void reconstruct_from_offset (long list_no, long offset,
float* recons) const;
/// Dataset manipulation functions
long remove_ids(const IDSelector& sel) override;
/** check that the two indexes are compatible (ie, they are
* trained in the same way and have the same
* parameters). Otherwise throw. */
void check_compatible_for_merge (const IndexIVF &other) const;
/** moves the entries from another dataset to self. On output,
* other is empty. add_id is added to all moved ids (for
* sequential ids, this would be this->ntotal */
virtual void merge_from (IndexIVF &other, idx_t add_id);
/** copy a subset of the entries index to the other index
*
* if subset_type == 0: copies ids in [a1, a2)
* if subset_type == 1: copies ids if id % a1 == a2
* if subset_type == 2: copies inverted lists such that a1
* elements are left before and a2 elements are after
*/
virtual void copy_subset_to (IndexIVF & other, int subset_type,
long a1, long a2) const;
~IndexIVF() override;
size_t get_list_size (size_t list_no) const
{ return invlists->list_size(list_no); }
/** intialize a direct map
*
* @param new_maintain_direct_map if true, create a direct map,
* else clear it
*/
void make_direct_map (bool new_maintain_direct_map=true);
/// 1= perfectly balanced, >1: imbalanced
double imbalance_factor () const;
/// display some stats about the inverted lists
void print_stats () const;
void replace_invlists (InvertedLists *il, bool own=false);
IndexIVF ();
};
struct IndexIVFStats {
size_t nq; // nb of queries run
size_t nlist; // nb of inverted lists scanned
size_t ndis; // nb of distancs computed
IndexIVFStats () {reset (); }
void reset ();
};
// global var that collects them all
extern IndexIVFStats indexIVF_stats;
} // namespace faiss
#endif