forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathIndexFlat.cpp
401 lines (324 loc) · 9.52 KB
/
IndexFlat.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include "IndexFlat.h"
#include <cstring>
#include "utils.h"
#include "Heap.h"
#include "FaissAssert.h"
#include "AuxIndexStructures.h"
namespace faiss {
IndexFlat::IndexFlat (idx_t d, MetricType metric):
Index(d, metric)
{
}
void IndexFlat::add (idx_t n, const float *x) {
xb.insert(xb.end(), x, x + n * d);
ntotal += n;
}
void IndexFlat::reset() {
xb.clear();
ntotal = 0;
}
void IndexFlat::search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const
{
// we see the distances and labels as heaps
if (metric_type == METRIC_INNER_PRODUCT) {
float_minheap_array_t res = {
size_t(n), size_t(k), labels, distances};
knn_inner_product (x, xb.data(), d, n, ntotal, &res);
} else if (metric_type == METRIC_L2) {
float_maxheap_array_t res = {
size_t(n), size_t(k), labels, distances};
knn_L2sqr (x, xb.data(), d, n, ntotal, &res);
}
}
void IndexFlat::range_search (idx_t n, const float *x, float radius,
RangeSearchResult *result) const
{
switch (metric_type) {
case METRIC_INNER_PRODUCT:
range_search_inner_product (x, xb.data(), d, n, ntotal,
radius, result);
break;
case METRIC_L2:
range_search_L2sqr (x, xb.data(), d, n, ntotal, radius, result);
break;
}
}
void IndexFlat::compute_distance_subset (
idx_t n,
const float *x,
idx_t k,
float *distances,
const idx_t *labels) const
{
switch (metric_type) {
case METRIC_INNER_PRODUCT:
fvec_inner_products_by_idx (
distances,
x, xb.data(), labels, d, n, k);
break;
case METRIC_L2:
fvec_L2sqr_by_idx (
distances,
x, xb.data(), labels, d, n, k);
break;
}
}
long IndexFlat::remove_ids (const IDSelector & sel)
{
idx_t j = 0;
for (idx_t i = 0; i < ntotal; i++) {
if (sel.is_member (i)) {
// should be removed
} else {
if (i > j) {
memmove (&xb[d * j], &xb[d * i], sizeof(xb[0]) * d);
}
j++;
}
}
long nremove = ntotal - j;
if (nremove > 0) {
ntotal = j;
xb.resize (ntotal * d);
}
return nremove;
}
void IndexFlat::reconstruct (idx_t key, float * recons) const
{
memcpy (recons, &(xb[key * d]), sizeof(*recons) * d);
}
/***************************************************
* IndexFlatL2BaseShift
***************************************************/
IndexFlatL2BaseShift::IndexFlatL2BaseShift (idx_t d, size_t nshift, const float *shift):
IndexFlatL2 (d), shift (nshift)
{
memcpy (this->shift.data(), shift, sizeof(float) * nshift);
}
void IndexFlatL2BaseShift::search (
idx_t n,
const float *x,
idx_t k,
float *distances,
idx_t *labels) const
{
FAISS_THROW_IF_NOT (shift.size() == ntotal);
float_maxheap_array_t res = {
size_t(n), size_t(k), labels, distances};
knn_L2sqr_base_shift (x, xb.data(), d, n, ntotal, &res, shift.data());
}
/***************************************************
* IndexRefineFlat
***************************************************/
IndexRefineFlat::IndexRefineFlat (Index *base_index):
Index (base_index->d, base_index->metric_type),
refine_index (base_index->d, base_index->metric_type),
base_index (base_index), own_fields (false),
k_factor (1)
{
is_trained = base_index->is_trained;
FAISS_THROW_IF_NOT_MSG (base_index->ntotal == 0,
"base_index should be empty in the beginning");
}
IndexRefineFlat::IndexRefineFlat () {
base_index = nullptr;
own_fields = false;
k_factor = 1;
}
void IndexRefineFlat::train (idx_t n, const float *x)
{
base_index->train (n, x);
is_trained = true;
}
void IndexRefineFlat::add (idx_t n, const float *x) {
FAISS_THROW_IF_NOT (is_trained);
base_index->add (n, x);
refine_index.add (n, x);
ntotal = refine_index.ntotal;
}
void IndexRefineFlat::reset ()
{
base_index->reset ();
refine_index.reset ();
ntotal = 0;
}
namespace {
typedef faiss::Index::idx_t idx_t;
template<class C>
static void reorder_2_heaps (
idx_t n,
idx_t k, idx_t *labels, float *distances,
idx_t k_base, const idx_t *base_labels, const float *base_distances)
{
#pragma omp parallel for
for (idx_t i = 0; i < n; i++) {
idx_t *idxo = labels + i * k;
float *diso = distances + i * k;
const idx_t *idxi = base_labels + i * k_base;
const float *disi = base_distances + i * k_base;
heap_heapify<C> (k, diso, idxo, disi, idxi, k);
if (k_base != k) { // add remaining elements
heap_addn<C> (k, diso, idxo, disi + k, idxi + k, k_base - k);
}
heap_reorder<C> (k, diso, idxo);
}
}
}
void IndexRefineFlat::search (
idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const
{
FAISS_THROW_IF_NOT (is_trained);
idx_t k_base = idx_t (k * k_factor);
idx_t * base_labels = labels;
float * base_distances = distances;
ScopeDeleter<idx_t> del1;
ScopeDeleter<float> del2;
if (k != k_base) {
base_labels = new idx_t [n * k_base];
del1.set (base_labels);
base_distances = new float [n * k_base];
del2.set (base_distances);
}
base_index->search (n, x, k_base, base_distances, base_labels);
for (int i = 0; i < n * k_base; i++)
assert (base_labels[i] >= -1 &&
base_labels[i] < ntotal);
// compute refined distances
refine_index.compute_distance_subset (
n, x, k_base, base_distances, base_labels);
// sort and store result
if (metric_type == METRIC_L2) {
typedef CMax <float, idx_t> C;
reorder_2_heaps<C> (
n, k, labels, distances,
k_base, base_labels, base_distances);
} else if (metric_type == METRIC_INNER_PRODUCT) {
typedef CMin <float, idx_t> C;
reorder_2_heaps<C> (
n, k, labels, distances,
k_base, base_labels, base_distances);
}
}
IndexRefineFlat::~IndexRefineFlat ()
{
if (own_fields) delete base_index;
}
/***************************************************
* IndexFlat1D
***************************************************/
IndexFlat1D::IndexFlat1D (bool continuous_update):
IndexFlatL2 (1),
continuous_update (continuous_update)
{
}
/// if not continuous_update, call this between the last add and
/// the first search
void IndexFlat1D::update_permutation ()
{
perm.resize (ntotal);
if (ntotal < 1000000) {
fvec_argsort (ntotal, xb.data(), (size_t*)perm.data());
} else {
fvec_argsort_parallel (ntotal, xb.data(), (size_t*)perm.data());
}
}
void IndexFlat1D::add (idx_t n, const float *x)
{
IndexFlatL2::add (n, x);
if (continuous_update)
update_permutation();
}
void IndexFlat1D::reset()
{
IndexFlatL2::reset();
perm.clear();
}
void IndexFlat1D::search (
idx_t n,
const float *x,
idx_t k,
float *distances,
idx_t *labels) const
{
FAISS_THROW_IF_NOT_MSG (perm.size() == ntotal,
"Call update_permutation before search");
#pragma omp parallel for
for (idx_t i = 0; i < n; i++) {
float q = x[i]; // query
float *D = distances + i * k;
idx_t *I = labels + i * k;
// binary search
idx_t i0 = 0, i1 = ntotal;
idx_t wp = 0;
if (xb[perm[i0]] > q) {
i1 = 0;
goto finish_right;
}
if (xb[perm[i1 - 1]] <= q) {
i0 = i1 - 1;
goto finish_left;
}
while (i0 + 1 < i1) {
idx_t imed = (i0 + i1) / 2;
if (xb[perm[imed]] <= q) i0 = imed;
else i1 = imed;
}
// query is between xb[perm[i0]] and xb[perm[i1]]
// expand to nearest neighs
while (wp < k) {
float xleft = xb[perm[i0]];
float xright = xb[perm[i1]];
if (q - xleft < xright - q) {
D[wp] = q - xleft;
I[wp] = perm[i0];
i0--; wp++;
if (i0 < 0) { goto finish_right; }
} else {
D[wp] = xright - q;
I[wp] = perm[i1];
i1++; wp++;
if (i1 >= ntotal) { goto finish_left; }
}
}
goto done;
finish_right:
// grow to the right from i1
while (wp < k) {
if (i1 < ntotal) {
D[wp] = xb[perm[i1]] - q;
I[wp] = perm[i1];
i1++;
} else {
D[wp] = 1.0 / 0.0;
I[wp] = -1;
}
wp++;
}
goto done;
finish_left:
// grow to the left from i0
while (wp < k) {
if (i0 >= 0) {
D[wp] = q - xb[perm[i0]];
I[wp] = perm[i0];
i0--;
} else {
D[wp] = 1.0 / 0.0;
I[wp] = -1;
}
wp++;
}
done: ;
}
}
} // namespace faiss