-
Notifications
You must be signed in to change notification settings - Fork 13
/
saver.py
243 lines (215 loc) · 10.8 KB
/
saver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import glob
import json
import os
import shutil
import time
import sys
from pathlib import Path
import deepspeed
import torch
import transformers
from safetensors.torch import save_file
from utils import is_main_process, DTYPE_MAP
last_checkpoint_time = None
def need_to_checkpoint(config):
global last_checkpoint_time
checkpoint = False
# rank 0 tracks if we need to checkpoint, broadcasts to everyone else
if is_main_process():
current_time = time.time()
if last_checkpoint_time is None:
last_checkpoint_time = current_time
elif (current_time - last_checkpoint_time) / 60 > config['checkpoint_every_n_minutes']:
checkpoint = True
last_checkpoint_time = current_time
result = [checkpoint]
torch.distributed.broadcast_object_list(result, src=0)
return result[0]
def convert_state_dict_dtype(state_dict, dtype):
for key, v in state_dict.items():
state_dict[key] = v.to(device='cpu', dtype=DTYPE_MAP[dtype])
class Saver:
def __init__(self, model_engine, pipeline_model, train_dataloader, lora_config, save_root, args, config):
self.model_engine = model_engine
self.pipeline_model = pipeline_model
self.train_dataloader = train_dataloader
self.lora_config = lora_config
self.save_root = save_root + '/' if save_root[-1] != '/' else save_root
self.args = args
self.config = config
self.keep_states = config.get('keep_states', -1)
self.chrono_states = {
'step': [],
'global_step': [],
}
# Load best loss from disk, if found, and if a best_loss model dir exists
self.best_loss = None
best_loss_path = os.path.join(self.save_root, 'best_loss.txt')
if os.path.exists(best_loss_path) and os.path.isdir(os.path.join(self.save_root, 'best_loss')):
with open(best_loss_path, 'r') as f:
self.best_loss = float(f.read())
print(f'Loaded best loss from disk: {self.best_loss}')
# TODO: this is pretty hacky. Is there a way to get the state_dict from the lora model directly,
# but still know which layers the given pipeline parallel stage actually trained?
def save_lora(self, name):
dp_id = self.model_engine.grid.get_data_parallel_rank()
stage_id = self.model_engine.grid.get_pipe_parallel_rank()
save_dir = self.save_root + name
tmp_dir = os.path.join(save_dir, 'tmp')
if dp_id == 0 and stage_id == 0:
os.makedirs(tmp_dir, exist_ok=False)
deepspeed.comm.barrier()
if dp_id == 0:
partial_state_dict = {}
for name, p in self.pipeline_model.named_parameters():
if p.requires_grad:
if not hasattr(p, 'original_name'):
print(f'WARNING: parameter {name} requires_grad but does not have original_name. Not saving it.')
continue
partial_state_dict[p.original_name.replace('.default', '').replace('.modules_to_save', '')] = p.detach()
if 'save_dtype' in self.config:
convert_state_dict_dtype(partial_state_dict, self.config['save_dtype'])
torch.save(partial_state_dict, os.path.join(tmp_dir, f'state_dict_{stage_id}.bin'))
deepspeed.comm.barrier()
if dp_id == 0 and stage_id == 0:
state_dict = {}
for path in glob.glob(os.path.join(tmp_dir, '*.bin')):
state_dict.update(torch.load(path, map_location='cpu'))
torch.save(state_dict, os.path.join(save_dir, 'adapter_model.bin'))
self.lora_config.save_pretrained(save_dir)
shutil.copy(self.args.config, save_dir)
if hasattr(self.args, "deepspeed_config") and self.args.deepspeed_config is not None:
shutil.copy(self.args.deepspeed_config, save_dir)
shutil.rmtree(tmp_dir)
def save_full_model(self, name, max_shard_size='5GB'):
dp_id = self.model_engine.grid.get_data_parallel_rank()
stage_id = self.model_engine.grid.get_pipe_parallel_rank()
save_dir = self.save_root + name
tmp_dir = os.path.join(save_dir, 'tmp')
if dp_id == 0 and stage_id == 0:
os.makedirs(tmp_dir, exist_ok=False)
deepspeed.comm.barrier()
if dp_id == 0:
# With BF16_Optimizer, we get pickle errors unless we do p.detach(). I have no idea why.
partial_state_dict = {p.original_name: p.detach() for p in self.pipeline_model.parameters()}
if 'save_dtype' in self.config:
convert_state_dict_dtype(partial_state_dict, self.config['save_dtype'])
torch.save(partial_state_dict, os.path.join(tmp_dir, f'state_dict_{stage_id}.bin'))
deepspeed.comm.barrier()
if dp_id == 0 and stage_id == 0:
state_dict = {}
for path in glob.glob(os.path.join(tmp_dir, '*.bin')):
state_dict.update(torch.load(path, map_location='cpu'))
shards, index = transformers.modeling_utils.shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name='model.safetensors')
for shard_file, shard in shards.items():
save_file(shard, os.path.join(save_dir, shard_file), metadata={"format": "pt"})
if index is not None:
save_index_file = 'model.safetensors.index.json'
save_index_file = os.path.join(save_dir, save_index_file)
# Save the index as well
with open(save_index_file, "w", encoding="utf-8") as f:
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
f.write(content)
shutil.copy(self.args.config, save_dir)
if hasattr(self.args, "deepspeed_config") and self.args.deepspeed_config is not None:
shutil.copy(self.args.deepspeed_config, save_dir)
additional_files_to_copy = [
'added_tokens.json',
'config.json',
'generation_config.json',
'special_tokens_map.json',
'tokenizer.json',
'tokenizer_config.json',
'tokenizer.model',
]
for path in glob.glob(os.path.join(self.config['model'], '*')):
if os.path.basename(path) in additional_files_to_copy:
shutil.copy(path, save_dir)
shutil.rmtree(tmp_dir)
def will_save(self, type, name):
if self.keep_states <= 0 or not is_main_process():
return
if type == 'step':
self.chrono_states['step'].append(name)
if len(self.chrono_states['step']) > self.keep_states:
print(f"Deleting {self.chrono_states['step'][0]}")
shutil.rmtree(os.path.join(self.save_root, self.chrono_states['step'].pop(0)))
elif type == 'global_step':
self.chrono_states['global_step'].append(name)
if len(self.chrono_states['global_step']) > self.keep_states:
print(f"Deleting {self.chrono_states['global_step'][0]}")
shutil.rmtree(os.path.join(self.save_root, self.chrono_states['global_step'].pop(0)))
else:
raise ValueError(f'Unknown save type: {type}')
def save_model(self, name):
# ignore epoch saves for chrono_states
if name.startswith("step"):
self.will_save('step', name)
self.save_full_model(name) if self.lora_config is None else self.save_lora(name)
def save_checkpoint(self, step):
self.will_save('global_step', f'global_step{step}')
self.model_engine.save_checkpoint(
self.save_root,
client_state={
'step': step,
'custom_loader': self.train_dataloader.state_dict(),
},
save_latest=True,
exclude_frozen_parameters=True
)
def process_epoch(self, epoch, step):
if self.train_dataloader.epoch != epoch:
self.save_checkpoint(step)
self.save_model(f'epoch{epoch}')
epoch = self.train_dataloader.epoch
if epoch > self.config['epochs']:
return None
if is_main_process():
print(f'Started new epoch: {epoch}')
return epoch
def process_step(self, step):
# Look at some simple "signal files" the user can write to save and optionally quit manually
should_manually_save = False
should_manually_quit = False
save_signal_file = Path(self.save_root) / 'save'
save_quit_signal_file = Path(self.save_root) / 'save_quit'
if save_signal_file.exists() and save_signal_file.is_file():
should_manually_save = True
deepspeed.comm.barrier()
if is_main_process():
os.remove(save_signal_file)
elif save_quit_signal_file.exists() and save_quit_signal_file.is_file():
should_manually_save = True
should_manually_quit = True
deepspeed.comm.barrier()
if is_main_process():
os.remove(save_quit_signal_file)
if ('save_steps' in self.config and step % self.config['save_steps'] == 0) or should_manually_save:
self.save_model(f'step{step}')
pending_save_best_loss = os.path.exists(os.path.join(self.save_root, ".pending_save_best_loss"))
if pending_save_best_loss:
self.save_model('best_loss')
if is_main_process():
if self.old_best is not None:
print(f"New best evaluation loss: {self.best_loss:.4f} from {self.old_best:.4f} (Δ{self.old_best - self.best_loss:.5f} [{100 * (1 - self.best_loss / self.old_best):.2f}%])")
else:
print(f"New best evaluation loss: {self.best_loss:.4f}")
os.replace(os.path.join(self.save_root, '.pending_save_best_loss'), os.path.join(self.save_root, 'best_loss.txt'))
if need_to_checkpoint(self.config) or should_manually_save:
self.save_checkpoint(step)
if should_manually_quit:
print('Manually quitting')
sys.exit()
def append_eval_results(self, loss, save_best=True):
if loss is not None:
if self.best_loss is None:
print(f"Evaluation loss: {loss:.4f}")
elif loss >= self.best_loss:
print(f"Evaluation loss: {loss:.4f} (best: {self.best_loss:.4f}, Δ: {self.best_loss - loss:.5f} [{100 * (1 - loss / self.best_loss):.2f}%])")
if self.best_loss is None or loss < self.best_loss:
self.old_best = self.best_loss
self.best_loss = loss
if save_best:
with open(os.path.join(self.save_root, ".pending_save_best_loss"), "w") as f:
f.write(str(self.best_loss))
deepspeed.comm.barrier()