-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreg_to_tex.py
249 lines (197 loc) · 9.22 KB
/
reg_to_tex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""Code to provide tex-tables for models of choice.
``produce_reg_df(model, name, data)`` returns a dataframe of regression results
and takes three arguments:
model -- A string of the regression to be run, e.g.:
'expectation ~ covariate_a + covariate_b'
name -- A string to label the model
data -- The dataframe to work with
``tex_models(model_list, filename)`` writes a texfile for a set of models and
takes two arguments:
model_list -- A list of dataframes as returned by the function
``produce_reg_df()``
filename -- The name of the tex-file to write, e.g., 'test.tex'
"""
import pandas as pd
import statsmodels.api as sm
import numpy as np
import re
from statsmodels.iolib.summary2 import summary_params
from patsy import dmatrices
from scipy import stats
def produce_reg_df(model, model_name, panel, reg_type='ols'):
y, x = dmatrices(model, panel)
if reg_type == 'ols':
results = sm.OLS(y, x).fit()
estimates = summary_params(results)[['Coef.', 'Std.Err.', 'P>|t|']]
'''
White’s (1980) heteroskedasticity robust standard errors. Defined as
sqrt(diag(X.T X)^(-1)X.T diag(e_i^(2)) X(X.T X)^(-1) where e_i = resid[i]
HC0_se is a property. It is not evaluated until it is called. When it is
called the RegressionResults instance will then have another attribute
cov_HC0, which is the full heteroskedasticity consistent covariance matrix
and also het_scale, which is in this case just resid**2. HCCM matrices are
only appropriate for OLS.
Note: Delete the following two lines for 'regular' standard errors.
'''
estimates['Std.Err.'] = results.HC0_se
estimates['P>|t|'] = stats.t.sf(
np.abs(estimates['Coef.'] / estimates['Std.Err.']), results.nobs - 1) * 2
elif reg_type == 'probit':
model = sm.Probit(y, x)
results = model.fit()
margeffs = results.get_margeff()
estimates = pd.DataFrame(
[margeffs.margeff, margeffs.margeff_se, margeffs.pvalues],
index=['Coef.', 'Std.Err.', 'P>|t|'],
columns=model.exog_names[1:]).T
estimates = estimates.apply(
lambda x: ['{0:0.3f}'.format(i) for i in x])
estimates['Std.Err.'] = estimates['Std.Err.'].apply(
lambda x: '(' + str(x) + ')')
for i in range(len(estimates)):
estimates['Coef.'].iloc[i] = str(estimates['Coef.'].iloc[i]) + (
(float(estimates['P>|t|'].iloc[i]) <= 0.01) * '_3stars' +
(0.01 < float(estimates['P>|t|'].iloc[i]) <= 0.05) * '_2stars' +
(0.05 < float(estimates['P>|t|'].iloc[i]) <= 0.10) * '_1star' +
(0.1 < float(estimates['P>|t|'].iloc[i])) * ''
)
estimates['P>|t|'] = estimates['P>|t|'].apply(lambda x: '')
# Instead of inserting lines, just replace pvalues by linespace.
estimates = estimates.rename(columns={
'P>|t|': 'addlinespace'}
)
stacked_estimates = pd.DataFrame(
estimates.stack(), columns=[model_name])
if reg_type == 'ols':
stacked_model_stats = pd.DataFrame(
[results.nobs, results.rsquared_adj],
index=['Observations', 'R2'],
columns=[model_name])
elif reg_type == 'probit':
stacked_model_stats = pd.DataFrame(
[results.nobs, results.prsquared],
index=['Observations', 'R2'],
columns=[model_name])
stacked_model = stacked_estimates.append(stacked_model_stats)
return stacked_model
def tex_models(model_list, filename):
''' '''
if len(model_list) > 1:
try:
merged_models = model_list[0].join(
model_list[1:],
how='outer'
)
index_order = []
for m in model_list:
for v in m.index:
if v not in index_order and v not in {'Observations', 'R2'}:
index_order.append(v)
index_order.append('Observations')
index_order.append('R2')
merged_models = merged_models.reindex(index_order)
except ValueError as e:
print('Models need different labels.', e)
raise
else:
merged_models = model_list[0]
merged_models.loc['R2'] = merged_models.loc['R2'].apply(
lambda x: str(np.round(100 * x, 1))
)
merged_models.loc['Observations'] = merged_models.loc['Observations'].apply(
lambda x: format(int(x), ',d')
)
merged_models = merged_models.fillna('')
merged_models.index = pd.Series(merged_models.index).apply(lambda x: str(x))
with pd.option_context("max_colwidth", 1000):
merged_tex = merged_models.to_latex(header=True, escape=False)
merged_tex = re.sub('\'', '', merged_tex)
merged_tex = re.sub('\_3stars', '\sym{***}', merged_tex)
merged_tex = re.sub('\_2stars', '\sym{**}', merged_tex)
merged_tex = re.sub('\_1star', '\sym{*}', merged_tex)
merged_tex = re.sub(r'\\begin{tabular}{.*}', '', merged_tex)
merged_tex = re.sub(r'\\end{tabular}', '', merged_tex)
merged_tex = re.sub(r'\\toprule', '', merged_tex)
merged_tex = re.sub(r'\\bottomrule', '', merged_tex)
merged_tex = re.sub(r' \\\\', r' \\tabularnewline', merged_tex)
merged_tex = re.sub('\(.* Std\.Err\.\)', '', merged_tex)
merged_tex = re.sub('\(.*addlinespace\)', r'\\addlinespace', merged_tex)
merged_tex = re.sub('addlinespace.*?tabularnewline', 'addlinespace', merged_tex)
merged_tex = re.sub('\\\_', ' ', merged_tex)
merged_tex = re.sub(', Coef.\)', '', merged_tex)
merged_tex = re.sub('\n\(', '\n', merged_tex)
merged_tex = re.sub(':leq:', r'$\leq$', merged_tex)
merged_tex = re.sub(':g:', r'$>$', merged_tex)
merged_tex = re.sub(':l:', r'$<$', merged_tex)
merged_tex = re.sub(':in:', r'$\in$', merged_tex)
merged_tex = re.sub(':infty:', r'$\infty$', merged_tex)
merged_tex = re.sub(':times:', r'$\\times$', merged_tex)
merged_tex = re.sub(':euro:', r'\\euro', merged_tex)
merged_tex = re.sub(':text:', r'\\text', merged_tex)
merged_tex = re.sub(':dol:', r'$', merged_tex)
merged_tex = re.sub(':bs:', r'\\', merged_tex)
merged_tex = re.sub(
'No.{} of Observations', '\midrule\n' + r'\\addlinespace' + '\nObservations',
merged_tex
)
merged_tex = re.sub('R2', r'Adj. (pseudo) R$^2$ (\%)', merged_tex)
with open(filename, 'w') as tex_file:
tex_file.write('\\begin{tabular}{l' + '{}'.format('c' * len(model_list)) + '}\n')
tex_file.write('\\toprule\n')
tex_file.write('\\addlinespace\n')
tex_file.write(merged_tex)
tex_file.write('\\addlinespace\n')
tex_file.write('\\bottomrule\n')
tex_file.write('\\end{tabular}\n')
def probit_average_partial_effect_table(probit_model, panel, indicator_dict={}):
"""Return table of average partial effects for *probit_model* (in patsy form),
estimated using data in *panel*.
For each binary variable in model, calculate APE as the difference between average
predicted probability with variable set to 1 and average predicted probability with
variable set to 0.
For each continuous variable in model, calculate APE as difference in predicted
probabilities if each value of variable is increased by 1 standard deviation.
If evaluated for binary variable, checks for possible linked indicator variables.
Calculates APE as difference between index where only *variable* is 1 among linked
indicators and index where all linked indicators and *variable* are 0. *indicator_dict*
hands dictionary of linked variables to function.
"""
y, x = dmatrices(probit_model, panel)
model = sm.Probit(y, x)
fitted_model = model.fit()
table = '\\begin{tabular}{lr}\n \\tabularnewline \\toprule\n'
table += '& Average Partial Effect \\tabularnewline \n'
table += ' \\midrule\n'
for i in fitted_model.model.exog_names[1:]:
probit_data = pd.DataFrame(
fitted_model.model.exog, columns=fitted_model.model.exog_names)
# Check if variable is binary:
binary = (probit_data[i].apply(
lambda x: (x in [0, 1, 0., 1.] or pd.isnull(x)) is True
)).all()
if not binary:
probit_data_plus_std = probit_data.copy()
probit_data_plus_std[i] = probit_data[i] + probit_data[i].std()
new_prob = fitted_model.predict(probit_data_plus_std).mean()
old_prob = fitted_model.predict(probit_data).mean()
ape = new_prob - old_prob
elif binary:
probit_data_at_zero = probit_data.copy()
probit_data_at_zero[i] = 0
related_indicators = indicator_dict.get(i)
if related_indicators:
for j in related_indicators:
if j in probit_data.columns:
probit_data_at_zero[j] = 0
probit_data_at_one = probit_data_at_zero.copy()
probit_data_at_one[i] = 1
new_prob = fitted_model.predict(probit_data_at_one).mean()
old_prob = fitted_model.predict(probit_data_at_zero).mean()
ape = new_prob - old_prob
cname = re.sub('_', '\_', i)
table += ' {} & {:1.3f} \\tabularnewline\n'.format(
cname,
ape
)
table += '\\bottomrule\n\\end{tabular}\n\n'
return table