-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_model.py
168 lines (142 loc) · 7.47 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# coding=utf-8
import argparse
import logging
from typing import List
import numpy as np
import torch
from rdkit import Chem
from rdkit import rdBase
from torch.utils.data import DataLoader
from tqdm import tqdm
import models.reinvent
from chem import smiles
from models.reinvent.dataset import Dataset
from utils import decrease_learning_rate
rdBase.DisableLog('rdApp.error')
def save_model(model, model_path, epoch, save_each_epoch):
model.checkpoint()
path = model_path
if save_each_epoch:
path += ".{}".format(epoch)
model.save(path)
def train(model: models.reinvent.Model, smiles_list: List[str], model_path: str, epochs=10, lr=0.001, patience=30000,
batch_size=128, steps_to_change_lr=500, lr_change=0.01, save_each_epoch=False,
temperature=1.0):
"""
Trains a model
:param model: the model to train
:param smiles_list: a list of SMILES to train on
:param model_path: path where to save the model
:param epochs: number of epochs to train
:param lr: Learning rate for the optimizer
:param patience: number of steps until the early stop kicks in and interrupts the training
:param batch_size: Batch size of the model
:param temperature: Factor by which which the logits are dived. Small numbers make the model more confident on each
position, but also more conservative. Large values result in random predictions at each step.
:return:
"""
# Create a Dataset from a SMILES file
moldata = Dataset.for_model(smiles_list, model)
print("batch size: {}\n".format(batch_size))
data = DataLoader(moldata, batch_size=batch_size, shuffle=False, drop_last=True, collate_fn=Dataset.collate_fn)
# we stop early if the loss does not change significantly anymore
lowest_loss = np.float("inf")
eps = 0.01
overall_patience = patience
patience = overall_patience
optimizer = torch.optim.Adam(model.rnn.parameters(), lr=lr)
for epoch in range(epochs):
logging.info("Start Epoch {}".format(epoch))
for step, batch in tqdm(enumerate(data), total=len(data)):
# Sample from DataLoader
seqs = batch.long()
# Calculate loss
log_p, _ = model.likelihood(seqs, temperature=temperature)
loss = - log_p.mean()
if loss.item() + eps < lowest_loss:
patience = overall_patience
lowest_loss = loss.item()
else:
patience -= 1
if patience == 0:
tqdm.write("*************Epoch {:2d}****************".format(epoch))
tqdm.write("*** NO LOSS IMPROVEMENT AT STEP {:3d} ***".format(step))
tqdm.write("*************EARLY STOP****************")
# Save the Prior
save_model(model, model_path, epoch, save_each_epoch)
return
# Calculate gradients and take a step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Every 500 steps we decrease learning rate and print some information
if step % (steps_to_change_lr // max(1, torch.cuda.device_count())) == 0 and step != 0:
decrease_learning_rate(optimizer, decrease_by=lr_change)
tqdm.write(("Epoch {:3d} step {:3d} loss: {:5.2f} "
"patience: {} lr: {}").format(epoch, step,
loss.data[0],
patience,
optimizer.param_groups[0]["lr"]))
seqs, likelihood, _ = model.sample(128, temperature=temperature)
valid = 0
tqdm.write("\n\n*************Epoch {:2d}****************".format(epoch))
smiles = model.sequence_to_smiles(seqs)
for i, smile in enumerate(smiles):
if Chem.MolFromSmiles(smile):
valid += 1
if i < 5:
tqdm.write(smile)
tqdm.write("\n{:>4.1f}% valid SMILES".format(100 * valid / len(seqs)))
tqdm.write("****************************************\n")
# Save the model after each epoch
save_model(model, model_path, epoch, save_each_epoch)
def main():
parser = argparse.ArgumentParser(description="Train a model on a SMILES file")
parser.add_argument("--input-model", '-i', help='Prior model file',
type=str, required=True)
parser.add_argument("--output-model", '-o', help='Path to the output model',
type=str, required=True)
parser.add_argument("--input-smiles", '-s', help='Path to the SMILES file',
type=str, required=True)
parser.add_argument("--standardize-smiles", help='Set if want to standardize the SMILES using RDKIT',
action="store_true", default=False)
parser.add_argument("--save-each-epoch", help="Set to save each epoch in a different model file.",
action="store_true", default=False)
parser.add_argument("--steps-to-change-lr", "--sclr", help="Number of steps to change learning rate", type=int,
default=500)
parser.add_argument("--lr-change", "--lrc", help="Ratio which the learning rate is changed", type=float,
default=0.01)
parser.add_argument("--epochs", help="Number of epochs to train [DEFAULT: 10]", type=int, default=10)
parser.add_argument("--batch-size", help="Number of molecules processed per batch [DEFAULT: 128]", type=int,
default=128)
parser.add_argument("--lr", help="Learning rate for training [DEFAULT: 0.001]", type=float, default=0.001)
parser.add_argument("--patience",
help=("Number of steps where the training get stopped if no loss improvement is noticed. "
"[DEFAULT: 30000]"),
type=int, default=30000)
parser.add_argument("--temperature", "-t",
help=("Temperature for the sequence sampling. Has to be larger than 0. Values below 1 make "
"the RNN more confident in it's generation, but also more conservative. "
"Values larger than 1 result in more random sequences. [DEFAULT: 1.0]"),
type=float, default=1.0)
args = parser.parse_args()
# setup the logger to get a nice output
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s: %(module)s.%(funcName)s +%(lineno)s: %(levelname)-8s %(message)s',
datefmt='%H:%M:%S'
)
model = models.reinvent.Model.load_from_file(args.input_model)
logging.info("Reading smiles...")
with open(args.input_smiles, 'r') as f:
lines = [line.strip().split()[0] for line in f]
logging.info("Read {} lines".format(len(lines)))
if args.standardize_smiles:
logging.info("Standardize SMILES")
smiles_list = smiles.standardize_smiles_list(lines)
else:
smiles_list = lines
train(model, smiles_list, model_path=args.output_model, epochs=args.epochs, batch_size=args.batch_size,
lr=args.lr, patience=args.patience, save_each_epoch=args.save_each_epoch,
steps_to_change_lr=args.steps_to_change_lr, lr_change=args.lr_change, temperature=args.temperature)
if __name__ == "__main__":
main()