-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathchatty.py
75 lines (62 loc) · 2.56 KB
/
chatty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import nltk
from nltk.stem import WordNetLemmatizer
import numpy as np
import random
from keras.models import load_model
import pickle
import json
class Chatty:
def __init__(self):
self.intents = json.loads(open('skolo_intents.json', encoding='utf-8').read())
self.words = pickle.load(open('words.pkl','rb'))
self.classes = pickle.load(open('classes.pkl','rb'))
self.model = load_model('chatbot_model.h5')
self.lemmatizer = WordNetLemmatizer()
def clean_up_sentence(self, sentence):
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [self.lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
def bow(self, sentence, show_details=True):
# tokenize the pattern
sentence_words = self.clean_up_sentence(sentence)
# bag of words - matrix of N words, vocabulary matrix
bag = [0]*len(self.words)
for s in sentence_words:
for i,w in enumerate(self.words):
if w == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
if show_details:
print ("found in bag: %s" % w)
return(np.array(bag))
def predict_class(self, sentence):
print('We entered the PREDICT CLASS FUNCTION')
# filter out predictions below a threshold
p = self.bow(sentence, show_details=False)
res = self.model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.25
results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"intent": self.classes[r[0]], "probability": str(r[1])})
print('We leaving the PREDICT CLASS function')
return return_list
def getResponse(self, ints):
print('We entered the GET RESPONSE FUNCTION')
tag = ints[0]['intent']
list_of_intents = self.intents['intents']
for i in list_of_intents:
if(i['tag']== tag):
result = random.choice(i['responses'])
break
else:
result = "You must ask the right questions"
print('We are leaving the GET RESPONSE FUNCTION')
return result
def chatbot_response(self, msg):
print('We entered the CHATBOT RESPONSE FUNCTION')
ints = self.predict_class(msg)
res = self.getResponse(ints)
return res