-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path21aLabdaFilter.py
244 lines (106 loc) · 2.76 KB
/
21aLabdaFilter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 16 19:13:06 2020
@author: vikas
"""
#Lambda
def f(x):
return (x**2)
f(3)
f(9)
f_lambda = lambda x : x**2
f_lambda(3)
a = f_lambda(3)
print (a)
print(f_lambda(4))
print(f_lambda(6))
f1_lambda = lambda x,y : x*y
a = f1_lambda(3,4)
a
print (a)
def f(x,y,z):
return (x+y+z)
f2_lambda = lambda x,y,z : x+y+z
print (f2_lambda(1,2,3))
dict1 = {'name':['Amit', 'Amy',' Tina'], 'year': [2012, 2013, 2014]}
df2 = pd.DataFrame(dict1, index = [0,1,2])
df2
caps = lambda x : x.upper()
caps('vikas')
df2.name = df2['name'].apply(caps)
df2
#Lambda
# Python code to illustrate cube of a number
# showing difference between def() and lambda().
def cube(y):
return y*y*y;
cube(5)
cube(54)
g = lambda x: x*x*x
print(g(7))
print(cube(7))
#Map
squared = []
items = [1, 2, 3, 4, 5]
for i in items:
squared.append(i**2)
squared
#Map allows us to implement this in a much simpler and nicer way. Here you go:
sq= lambda x: x**2
squared1 = list(map(sq, items))
squared1
# Python code to illustrate
# map() with lambda()
# to get double of a list.
li = [5, 7, 22, 97, 54, 62, 77, 23, 73, 61]
final_list = list(map(lambda x: x*2 , li))
print(final_list)
'''
#Most of the times we use lambdas with map so I did the same. Instead of a list of inputs we can even have a list of functions!
def multiply(x):
return (x*x)
def add(x):
return (x+x)
funcs = [multiply, add]
for i in range(5):
value = list(map(lambda x: x(i), funcs))
print(value)
# Output:
# [0, 0]
# [1, 2]
# [4, 4]
# [9, 6]
# [16, 8]
'''
#Filter
number_list = list(range(-5, 5))
number_list
less_than_zero = list(filter(lambda x: x < 0, number_list))
print(less_than_zero)
# Output: [-5, -4, -3, -2, -1]
# Python code to illustrate
# filter() with lambda()
li = [5, 7, 22, 97, 54, 62, 77, 23, 73, 61]
final_list = list(filter(lambda x: (x%2 == 0) , li))
print(final_list)
def f1(x):
return(x%2 == 0)
# Python code to illustrate
# reduce() with lambda()
# to get sum of a list
from functools import reduce
li = [5, 8, 10, 20, 50, 100]
s1 = reduce(lambda x, y: x + y, li)
print (s1)
#Reduce
#Reduce is a really useful function for performing some computation on a list and returning the result. It applies a rolling computation to sequential pairs of values in a list. For example, if you wanted to compute the product of a list of integers.
#So the normal way you might go about doing this task in python is using a basic for loop:
product = 1
list = [1, 2, 3, 4]
for num in list:
product = product * num
# product = 24
from functools import reduce
product = reduce((lambda x, y: x * y), [1, 2, 3, 4])
# Output: 24
df.dtypes