-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathvat.py
72 lines (53 loc) · 2.62 KB
/
vat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import tensorflow as tf
import numpy
import sys, os
import layers as L
import cnn
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_float('epsilon', 8.0, "norm length for (virtual) adversarial training ")
tf.app.flags.DEFINE_integer('num_power_iterations', 1, "the number of power iterations")
tf.app.flags.DEFINE_float('xi', 1e-6, "small constant for finite difference")
def logit(x, is_training=True, update_batch_stats=True, stochastic=True, seed=1234):
return cnn.logit(x, is_training=is_training,
update_batch_stats=update_batch_stats,
stochastic=stochastic,
seed=seed)
def forward(x, is_training=True, update_batch_stats=True, seed=1234):
if is_training:
return logit(x, is_training=True,
update_batch_stats=update_batch_stats,
stochastic=True, seed=seed)
else:
return logit(x, is_training=False,
update_batch_stats=update_batch_stats,
stochastic=False, seed=seed)
def get_normalized_vector(d):
d /= (1e-12 + tf.reduce_max(tf.abs(d), range(1, len(d.get_shape())), keep_dims=True))
d /= tf.sqrt(1e-6 + tf.reduce_sum(tf.pow(d, 2.0), range(1, len(d.get_shape())), keep_dims=True))
return d
def generate_virtual_adversarial_perturbation(x, logit, is_training=True):
d = tf.random_normal(shape=tf.shape(x))
for _ in range(FLAGS.num_power_iterations):
d = FLAGS.xi * get_normalized_vector(d)
logit_p = logit
logit_m = forward(x + d, update_batch_stats=False, is_training=is_training)
dist = L.kl_divergence_with_logit(logit_p, logit_m)
grad = tf.gradients(dist, [d], aggregation_method=2)[0]
d = tf.stop_gradient(grad)
return FLAGS.epsilon * get_normalized_vector(d)
def virtual_adversarial_loss(x, logit, is_training=True, name="vat_loss"):
r_vadv = generate_virtual_adversarial_perturbation(x, logit, is_training=is_training)
logit = tf.stop_gradient(logit)
logit_p = logit
logit_m = forward(x + r_vadv, update_batch_stats=False, is_training=is_training)
loss = L.kl_divergence_with_logit(logit_p, logit_m)
return tf.identity(loss, name=name)
def generate_adversarial_perturbation(x, loss):
grad = tf.gradients(loss, [x], aggregation_method=2)[0]
grad = tf.stop_gradient(grad)
return FLAGS.epsilon * get_normalized_vector(grad)
def adversarial_loss(x, y, loss, is_training=True, name="at_loss"):
r_adv = generate_adversarial_perturbation(x, loss)
logit = forward(x + r_adv, is_training=is_training, update_batch_stats=False)
loss = L.ce_loss(logit, y)
return loss