
Bridging on Taiko
An intro to the built-in signal service, bridge, and vaults

Merkle Tree and Merkle Proof

Merkle Tree and Merkle Proof
If we know the root, we can prove

the inclusion of any leaf

One cross-chain solution:
synchronizing Merkle roots

Taiko State Tree (Trie) Ethereum State Trie

Taiko
State
Root

Eth
State
Root

Taiko
State
Root

Eth
State
Root

Root = Block Hash

Ethereum Root → Taiko (v1)
• When: a block is proposed. The latest

Ethereum block hash blockhash(block.number -
1) is attached to the L2 block’s metadata

• On L2, when the block is processed, in the
block’s first tx (anchor), this value is written
to L2 storage.

• Later ZKP will prove the right value is the
one used on L2 by the anchor tx. Using an
incorrect value will invalidate this block and
all future blocks.

• L1 → L2 bridging can be immediate.

Link

https://github.com/taikoxyz/taiko-mono/blob/013912fc7b74e9212dcbd374f47cf6b3e22252d6/packages/protocol/contracts/L2/TaikoL2.sol#L171

Taiko Root → Ethereum (v1)

• When: a block is verified.

• On L1, when a block is verified, the
declared L2 block hash (in a fork choice) is
trusted (verification happens on L1)

• L2 → L1 bridging needs to wait for ZKPs.

Link

https://github.com/taikoxyz/taiko-mono/blob/013912fc7b74e9212dcbd374f47cf6b3e22252d6/packages/protocol/contracts/L1/libs/LibVerifying.sol#L147

In Ethereum, two level of tree
structure

A full Merkle proof has two parts:
the account proof and the account storage proof

Signal Service

Taiko State Tree (Trie) Ethereum State Trie

account proof
done in ZKPAddress controlled (trusted)

Signal
Service

(SS)

Signal
Service

(SS)

Eth SS
sRoot

Taiko SS
sRoot

• A smaller scope, not the whole tree 
A smaller merkle proof, lower cost

SignalRoot on Ethereum → Taiko (v2)
• On L2, when the block is processed, in the

block’s first tx (anchor), signalRoot on Ethereum
is fetched and provided as a param, then written
to L2 storage.

• ZKP will prove the signalRoot is correct with an
account proof.

• Optimization: account proof is once per block,
with v1, each cross-chain proof will have an
account proof.

• Downside: apply only to storage slots in the
signal service.

• Developers can still build bridges/cross-chain
messaging solutions using block hash.

Link

https://github.com/taikoxyz/taiko-mono/blob/013912fc7b74e9212dcbd374f47cf6b3e22252d6/packages/protocol/contracts/L2/TaikoL2.sol#L171

SignalRoot on Taiko→ Ethereum (v1)

• When: a block is verified.

• On L1, when a block is verified, the
declared L2 signalRoot (also in a fork
choice) is trusted (verification happens on
L1)

• (Same) L2’s block hash cannot be trusted
without block being verified. This means L2
→ L1 bridging needs to wait for ZKPs.

Link

https://github.com/taikoxyz/taiko-mono/blob/013912fc7b74e9212dcbd374f47cf6b3e22252d6/packages/protocol/contracts/L1/libs/LibVerifying.sol#L147

Sending Signals

• Any address can send any non-zero bytes32 as a signal.

• slot = hash(msg.sender, signal)

• Slot value is 1.

• The same signal can be sent more than once, no side
effect.

• Signal sent cannot be revoked (no delete)

• Same signal sent by different senders ends up in
different slots.

Checking Signals

• Given a source chain id, a sender (app), the signal, and
an storage proof, return true if the signal has been sent
from the source chain’s signal service.

• On the dest chain, the source chain’s signal service
must be registered (trusted)

• True can only be returned if the signal service root from
the source chain has been synchronized to this (dest)
chain.

Cross-chain any message
struct AnyMessage {
… 
…
}

hash(anyMessage)

Source chain Dest Chain

hash(anyMessage)

“srcChainId” and “app” are provided by
subscribing to source chain events.

signalRoot sync

The Bridge

Source chain Dest Chain

• Get Ether from sender
• Make sure message ID is unique
• Hash the message into a (unique) signal, then send it

• Hash the message into signal and verify it
has been sent using merkle proof and not
processed yet

• Transfer (depositValue) Ether to users
• Call the `to` address using `data` and

`callValue`
• Mark the message is processed.

PREVIOUSLY

The Bridge

Source chain Dest Chain

• Get Ether from sender
• Make sure message ID is unique
• Hash the message into a (unique) signal, then send it

• Hash the message into signal and verify it
has been sent using merkle proof and not
processed yet

• Transfer (depositValue) Ether to users
• Call the `to` address using `data` and

`callValue`
• Mark the message is processed.

NOW

The Bridge Context

• When calling the `to`
function, the bridge
provides context info
through a context() function
so the `to` contract can
perform permission checks.

Overview

Chain 1 Chain 2

Signal
Service 2

Signal
Service 1

Bridge 2Bridge 1

Mutually Trusted

Mutually Trusted

Trust Trust

Vaults

Chain 1 Chain 2

Signal
Service 2

Signal
Service 1

Bridge 2Bridge 1

Mutually Trusted

Mutually Trusted

Trust Trust

NFT Vault
1

NFT Vault
2

Mutually Trusted

Trust Trust

Vaults

Chain 1 Chain 2

Signal
Service 2

Signal
Service 1

Bridge 2Bridge 1

Exchange signal Roots

Trust Trust

NFT Vault
1

NFT Vault
2

Get NFT from user, 
construct and send the message 
(receiveNFT and params)

Call sendNFT

processMessage

Call the vault receiveNFT to 
send the NFT to the user

Call context() to verify 
message.sender is “NFT vault 1”

receiveNFT can only be called from “Bridge 2”

PREVIOUSLY

Ether

Ether

Vaults

Chain 1 Chain 2

Signal
Service 2

Signal
Service 1

Bridge 2Bridge 1

Exchange signal Roots

Trust Trust

NFT Vault
1

NFT Vault
2

Get NFT from user, 
construct and send the message 
(receiveNFT and params)

Call sendNFT

processMessage

Call the vault receiveNFT to 
send the NFT to the user

Call context() to verify 
message.sender is “NFT vault 1”

receiveNFT can only be called from “Bridge 2”

NOW

recallMessage() payable

receiveNFT is now “payable”

Vaults are application level contracts
tot part of Taiko protocol,

Developers can build and deploy other
apps to interact with the bridge.

L2 ↔ L2

Signal
Service

(SS)

Signal
Service

(SS)

L1 SS
sRoot

L2-A SS
sRoot

Signal
Service

(SS)

L1 SS
sRoot

L2-B SS
sRoot

L1

L2-A L2-B

Step 1
Step 2

• Wait for two signalRoots to be synced
• Use 2 storageProof for proving

