-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
266 lines (224 loc) · 11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import torch
import torch.optim as optim
import numpy as np
import os
import argparse
import time
from depth2mesh import config, data
from depth2mesh.checkpoints import CheckpointIO
from depth2mesh.utils.logs import create_logger
from depth2mesh.utils.sampler import GroupedFixedSampler, GroupedRandomSampler, GroupedBatchSampler
from collections import OrderedDict
# Arguments
parser = argparse.ArgumentParser(
description='Training function.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
parser.add_argument('--validate-every-epoch', action='store_true', help='Whether to validate every epoch or not.')
parser.add_argument('--exit-after', type=int, default=-1,
help='Checkpoint and exit after specified number of seconds'
'with exit code 2.')
parser.add_argument('--num-workers', type=int, default=4,
help='Number of workers to use for train and val loaders.')
parser.add_argument('--epochs-per-run', type=int, default=-1,
help='Number of epochs to train before restart.')
if __name__ == '__main__':
args = parser.parse_args()
cfg = config.load_config(args.config, 'configs/default.yaml')
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
device = torch.device("cuda" if is_cuda else "cpu")
num_workers = args.num_workers
epochs_per_run = args.epochs_per_run
# Set t0
t0 = time.time()
# Shorthands
out_dir = cfg['training']['out_dir']
batch_size = cfg['training']['batch_size']
inner_batch_size = cfg['training']['inner_batch_size']
backup_every = cfg['training']['backup_every']
exit_after = args.exit_after
model_selection_metric = cfg['training']['model_selection_metric']
if cfg['training']['model_selection_mode'] == 'maximize':
model_selection_sign = 1
elif cfg['training']['model_selection_mode'] == 'minimize':
model_selection_sign = -1
else:
raise ValueError('model_selection_mode must be '
'either maximize or minimize.')
# Output directory
if not os.path.exists(out_dir):
os.makedirs(out_dir)
# Initialize model
model = config.get_model(cfg, device='cuda').to(device)
if cfg['training']['stage'] != 'skinning_weights':
# Load skinning networks
optim_skinning_net_path = cfg['model']['skinning_net1']
ckpt = torch.load(optim_skinning_net_path)
encoder_fwd_state_dict = OrderedDict()
skinning_decoder_fwd_state_dict = OrderedDict()
encoder_bwd_state_dict = OrderedDict()
skinning_decoder_bwd_state_dict = OrderedDict()
for k, v in ckpt['model'].items():
# Remove module key words, which were created by torch.nn.DataParallel
if k.startswith('module'):
k = k[7:]
# Create state dicts for different modules
if k.startswith('skinning_decoder_fwd'):
skinning_decoder_fwd_state_dict[k[21:]] = v
elif k.startswith('skinning_decoder_bwd'):
skinning_decoder_bwd_state_dict[k[21:]] = v
elif k.startswith('encoder_fwd'):
encoder_fwd_state_dict[k[12:]] = v
elif k.startswith('encoder_bwd'):
encoder_bwd_state_dict[k[12:]] = v
# Load state dicts
model.encoder_fwd.load_state_dict(encoder_fwd_state_dict)
model.encoder_bwd.load_state_dict(encoder_bwd_state_dict)
model.skinning_decoder_fwd.load_state_dict(skinning_decoder_fwd_state_dict)
model.skinning_decoder_bwd.load_state_dict(skinning_decoder_bwd_state_dict)
# Intialize optimizer
lr = cfg['training']['lr']
if cfg['training']['stage'] == 'meta-hyper' and cfg['model']['decoder'] == 'hyper_bvp':
if model.decoder.hierarchical_pose:
optimizer = optim.Adam(
params = [
{
"params": model.decoder.net.parameters(),
"lr": lr,
},
{
"params": model.decoder.pose_encoder.parameters(),
"lr": 1e-4,
}
]
)
else:
optimizer = optim.Adam(model.parameters(), lr=lr)
else:
optimizer = optim.Adam(model.parameters(), lr=lr)
# Create trainer
trainer = config.get_trainer(model, optimizer, cfg, device=device)
checkpoint_io = CheckpointIO(out_dir, model=model, optimizer=optimizer)
try:
load_dict = checkpoint_io.load('model.pt')
except FileExistsError:
load_dict = dict()
epoch_it = load_dict.get('epoch_it', -1)
it = load_dict.get('it', -1)
metric_val_best = load_dict.get(
'loss_val_best', -model_selection_sign * np.inf)
# Dataset
train_dataset = config.get_dataset('train', cfg)
val_dataset = config.get_dataset('val', cfg, subsampling_rate=10) # use a fraction of data for quick validation
if cfg['training']['stage'] in ['skinning_weights', 'meta']:
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size,
shuffle=True, num_workers=num_workers,
collate_fn=data.collate_remove_none,
worker_init_fn=data.worker_init_fn)
elif cfg['training']['stage'] in ['meta-hyper']:
train_loader = torch.utils.data.DataLoader(
train_dataset, num_workers=num_workers,
batch_sampler=GroupedBatchSampler(GroupedRandomSampler(train_dataset.indices, max_batch_size=batch_size)),
collate_fn=data.collate_remove_none,
worker_init_fn=data.worker_init_fn)
else:
raise ValueError('Unsupported stage option. Supported stages are: skinning_weights, meta, meta-hyper')
if cfg['training']['stage'] in ['skinning_weights', 'meta']:
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=1, num_workers=1, shuffle=False,
collate_fn=data.collate_remove_none,
worker_init_fn=data.worker_init_fn)
elif cfg['training']['stage'] in ['meta-hyper']:
val_loader = torch.utils.data.DataLoader(
val_dataset, num_workers=num_workers,
batch_sampler=GroupedBatchSampler(GroupedFixedSampler(val_dataset.indices, batch_size=inner_batch_size)),
collate_fn=data.collate_remove_none,
worker_init_fn=data.worker_init_fn)
else:
raise ValueError('Unsupported stage option. Supported stages are: skinning_weights, meta, meta-hyper')
logger, writter = create_logger(out_dir)
logger.info('Current best validation metric (%s): %.8f'
% (model_selection_metric, metric_val_best))
# Shorthands
print_every = cfg['training']['print_every']
checkpoint_every = cfg['training']['checkpoint_every']
validate_every = cfg['training']['validate_every']
visualize_every = cfg['training']['visualize_every']
max_iterations = cfg['training']['max_iterations']
max_epochs = cfg['training']['max_epochs']
# Print model
nparameters = sum(p.numel() for p in model.parameters())
logger.info('Total number of parameters: %d' % nparameters)
logger.info (len(train_loader))
curr_epoch_cnt = 0
while epochs_per_run <= 0 or curr_epoch_cnt < epochs_per_run:
epoch_it += 1
for batch in train_loader:
it += 1
loss_dict = trainer.train_step(batch, it)
loss = loss_dict['total_loss']
for k, v in loss_dict.items():
writter.add_scalar('train/{}'.format(k), v, it)
# Print output
if print_every > 0 and (it % print_every) == 0:
logger.info('[Epoch %02d] it=%03d, loss=%.4f'
% (epoch_it, it, loss))
# Save checkpoint
if (checkpoint_every > 0 and it > 0 and (it % checkpoint_every) == 0):
logger.info('Saving checkpoint')
checkpoint_io.save('model.pt', epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
# Backup if necessary
if (backup_every > 0 and it > 0 and (it % backup_every) == 0):
logger.info('Backup checkpoint')
checkpoint_io.save('model_%d.pt' % it, epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
# Run validation
if validate_every > 0 and (it % validate_every) == 0:
eval_dict = trainer.evaluate(val_loader, val_dataset)
metric_val = eval_dict[model_selection_metric]
logger.info('Validation metric (%s): %.4f'
% (model_selection_metric, metric_val))
for k, v in eval_dict.items():
writter.add_scalar('val/%s' % k, v, it)
if model_selection_sign * (metric_val - metric_val_best) > 0:
metric_val_best = metric_val
logger.info('New best model (loss %.4f)' % metric_val_best)
checkpoint_io.save('model_best.pt', epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
# Exit if necessary
if exit_after > 0 and (time.time() - t0) >= exit_after:
logger.info('Time limit reached. Exiting.')
checkpoint_io.save('model.pt', epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
exit(3)
if max_iterations > 0 and it >= max_iterations:
logger.info('Maximum iteration reached. Exiting.')
checkpoint_io.save('model.pt', epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
exit(0)
if max_epochs > 0 and epoch_it >= max_epochs:
logger.info('Maximum epoch reached. Exiting.')
checkpoint_io.save('model.pt', epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
exit(0)
curr_epoch_cnt += 1
# Run validation
if args.validate_every_epoch:
eval_dict = trainer.evaluate(val_loader, val_dataset)
metric_val = eval_dict[model_selection_metric]
logger.info('Validation metric (%s): %.4f'
% (model_selection_metric, metric_val))
for k, v in eval_dict.items():
writter.add_scalar('val/%s' % k, v, it)
if model_selection_sign * (metric_val - metric_val_best) > 0:
metric_val_best = metric_val
logger.info('New best model (loss %.4f)' % metric_val_best)
checkpoint_io.save('model_best.pt', epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
logger.info('Job will restart soon. Saving checkpoint.')
checkpoint_io.save('model.pt', epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
exit(3)