-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepare_regime.py
326 lines (254 loc) · 11.4 KB
/
prepare_regime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
from scipy.io import savemat
import numpy as np
import pickle
import logging
import qutip
from scipy import sparse
from qnet.algebra.operator_algebra import *
from qnet.algebra.circuit_algebra import *
from qnet.circuit_components.displace_cc import Displace
import qnet.algebra.state_algebra as sa
################################################################################
######## One system
################################################################################
######## Jaynes-Cummings System
################################################################################
# default are for absorptive bistability
def make_nparams_JC(W,k,g,g0,DD,TT,Cn=10.5,
kn=.12, yn=11.3, DDn=0, TTn=0., J = 0.5):
g0n = np.sqrt(2.*kn*Cn)
Wn = yn*kn/np.sqrt(2)/g0n
nparams = {
W: Wn/np.sqrt(2*kn),
k: 2*kn,
g: 2./np.sqrt(2*J),
g0: -g0n/np.sqrt(2*J),
DD: DDn,
TT: TTn,
}
xrs = np.linspace(0, 10)
yrs = 2*Cn*xrs/(1+xrs**2) + xrs
return nparams
def make_system_JC(Nfock_a, Nfock_j):
## TODO!! when drive is not present...
## Make Operators
a = Destroy(1)
ad = a.dag()
sm = LocalSigma(2, 1,0)/sqrt(2)
sp = sm.dag()
sz = sp*sm - sm*sp
j = Jminus(2)
jp = j.dag()
jz = Jz(2)
jx = (jp + j) / 2.
jy = (jp - j) / 2.
## Make SLH Model
k,g0,g = symbols("kappa, g0,gamma", positive=True)
DD, TT = symbols("Delta, Theta", real=True)
W = symbols("Omega")
L = [sqrt(k)*a,
sqrt(g)*j]
H = -I*g0*(a*jp - ad * j) + DD*jz + TT*ad*a
S = identity_matrix(2)
slh = SLH(S, L, H).coherent_input(W,0)
## Numerical parameters
a.space.dimension = Nfock_a
j.space.dimension = Nfock_j
nparams = make_nparams_JC(W=W,k=k,g=g,g0=g0,DD=DD,TT=TT)
Hq, Lqs = slh.substitute(nparams).HL_to_qutip()
## Observables
obs = (a, j, jz, a*a, a.dag()*a, a*jp, jp, jx, jy)
obsq = [o.to_qutip(full_space=slh.space) for o in obs]
psi0 = qutip.tensor(qutip.basis(Nfock_a,0),qutip.basis(Nfock_j,0)).data
H = Hq.data
Ls = [Lq.data for Lq in Lqs]
obsq_data = [ob.data for ob in obsq]
return H, psi0, Ls, obsq_data, obs
######## Kerr System
######## Bistable regimes based on the examples on pg. 6 in https://arxiv.org/pdf/1402.5983.pdf
######## When adding a new regime, be sure to import in make_quantum_trajectory.py
######## And update when regime is checked.
######## Also make sure to update in hybrid_qsd.py for functions obs_to_ls_...
######## Also, hybrid_qsd.py check the regime for determining the second system.
################################################################################
def make_system_kerr_bistable(Nfock, drive=True):
if drive:
params_dict = {"alpha0" : 21.75, "chi" : -10, "Delta" : 100., "kappa_1" : 25, "kappa_2" : 25}
else:
params_dict = {"alpha0" : 0.0, "chi" : -10, "Delta" : 100., "kappa_1" : 25, "kappa_2" : 25}
return make_system_kerr(Nfock, params_dict)
## deprecated regime
# def make_system_kerr_bistable_regime2(Nfock, drive=True):
# if drive:
# params_dict = {"alpha0" : 33.25, "chi" : -1.5, "Delta" : 60., "kappa_1" : 25, "kappa_2" : 25}
# else:
# params_dict = {"alpha0" : 0., "chi" : -1.5, "Delta" : 60., "kappa_1" : 25, "kappa_2" : 25}
# return make_system_kerr(Nfock, params_dict)
def make_system_kerr_bistable_regime_chose_drive(Nfock, which_kerr, drive):
"""Most custom options.
User can pick between bistable kerr A and B (which_kerr).
"""
assert which_kerr in ['A', 'B']
if which_kerr == 'A':
params_dict = {"alpha0" : drive, "chi" : -10, "Delta" : 100., "kappa_1" : 25, "kappa_2" : 25}
else:
params_dict = {"alpha0" : drive, "chi" : -1.5, "Delta" : 60., "kappa_1" : 25, "kappa_2" : 25}
return make_system_kerr(Nfock, params_dict)
def make_system_kerr_qubit(Nfock, drive=True):
if drive:
params_dict = {"alpha0" : 10.0, "chi" : -100, "Delta" : 0., "kappa_1" : 0.5, "kappa_2" : 0}
else:
params_dict = {"alpha0" : 0.0, "chi" : -100, "Delta" : 0., "kappa_1" : 0.5, "kappa_2" : 0}
return make_system_kerr(Nfock, params_dict)
def make_system_kerr(Nfock, params_dict):
# Define Kerr parameters
chi = symbols("chi", real=True, positive=True)
Delta = symbols("Delta", real=True)
kappa_1, kappa_2 = symbols("kappa_1, kappa_2", real=True, positive=True)
alpha0 = symbols("alpha_0")
params = {alpha0: params_dict["alpha0"],
chi: params_dict["chi"],
Delta: params_dict["Delta"],
kappa_1: params_dict["kappa_1"],
kappa_2: params_dict["kappa_2"],
}
# Construct Kerr SLH
a_k = Destroy("k")
S = -identity_matrix(2)
L = [sqrt(kappa_1)*a_k, sqrt(kappa_2)*a_k]
H = Delta*a_k.dag()*a_k + chi/2*a_k.dag()*a_k.dag()*a_k*a_k
KERR = SLH(S, L, H).toSLH()
# Add coherent drive
SYS = KERR << Displace(alpha=alpha0)+cid(1)
SYS = SYS.toSLH()
# SYS_no_drive = KERR.toSLH()
SYS_num = SYS.substitute(params)
# SYS_num_no_drive = SYS_no_drive.substitute(params)
SYS_num.space.dimension = Nfock
# SYS_num_no_drive.space.dimension = Nfock
Hq, Lqs = SYS_num.HL_to_qutip()
## Observables
obs = [a_k.dag()*a_k, a_k+a_k.dag(), (a_k-a_k.dag())/1j]
obsq = [o.to_qutip(full_space = SYS_num.space) for o in obs]
psi0 = qutip.tensor(qutip.basis(Nfock,0)).data
H = Hq.data
Ls = [Lq.data for Lq in Lqs]
obsq_data = [ob.data for ob in obsq]
return H, psi0, Ls, obsq_data, obs
################################################################################
######## Two systems
################################################################################
######## Jaynes-Cummings System
################################################################################
#### (NOT IMPLEMENTED YET!)
#### TODO: implement this
######## Kerr System
################################################################################
def make_system_kerr_bistable_regime_chose_drive_two_systems(Nfock, which_kerr, custom_drive, drive_second_system=False):
assert which_kerr in ['A', 'B']
if which_kerr == 'A':
params_dict = {"alpha0" : custom_drive, "chi" : -10, "Delta" : 100., "kappa_1" : 25, "kappa_2" : 25}
else:
params_dict = {"alpha0" : custom_drive, "chi" : -1.5, "Delta" : 60., "kappa_1" : 25, "kappa_2" : 25}
return make_system_kerr_two_systems(Nfock, params_dict, drive_second_system=drive_second_system)
def make_system_kerr_bistable_two_systems(Nfock, drive_second_system=False):
params_dict = {"alpha0" : 21.75, "chi" : -10, "Delta" : 100., "kappa_1" : 25, "kappa_2" : 25}
return make_system_kerr_two_systems(Nfock, params_dict, drive_second_system=drive_second_system)
def make_system_kerr_qubit_two_systems(Nfock, drive_second_system=False):
params_dict = {"alpha0" : 10.0, "chi" : -100, "Delta" : 0., "kappa_1" : 0.5, "kappa_2" : 0}
return make_system_kerr_two_systems(Nfock, params_dict, drive_second_system=drive_second_system)
def make_system_empty_then_kerr(Nfock, which_kerr, custom_drive,
drive_second_system=False, S_mult=-1.):
assert which_kerr in ['A', 'B']
if which_kerr == 'A':
params_dict = {"alpha0" : custom_drive, "chi" : -10, "Delta" : 100., "kappa_1" : 25, "kappa_2" : 25}
else:
params_dict = {"alpha0" : custom_drive, "chi" : -1.5, "Delta" : 60., "kappa_1" : 25, "kappa_2" : 25}
# Define Kerr parameters for system 2:
chi = symbols("chi", real=True, positive=True)
Delta = symbols("Delta", real=True)
kappa_1, kappa_2 = symbols("kappa_1, kappa_2", real=True, positive=True)
alpha0 = symbols("alpha_0")
params = {alpha0: params_dict["alpha0"],
chi: params_dict["chi"],
Delta: params_dict["Delta"],
kappa_1: params_dict["kappa_1"],
kappa_2: params_dict["kappa_2"],
}
## Empty system 1:
a_e = Destroy("e") ## fictitious operator for empty system 1
S_empty = identity_matrix(2) * S_mult
L_empty = [0., 0.]
H_empty = a_e.dag()*a_e ## Need to feed in operator, will become zero for dim == 1...
EMPTY = SLH(S_empty, L_empty, H_empty).toSLH()
# Add coherent drive
SYS_EMPTY = EMPTY << Displace(alpha=alpha0)+cid(1)
# Construct H_num and L_num for a driven system
SYS_EMPTY = SYS_EMPTY.toSLH()
SYS_EMPTY_num = SYS_EMPTY.substitute(params)
SYS_EMPTY_num.space.dimension = 1
H1, L1s = SYS_EMPTY_num.HL_to_qutip()
# Construct Kerr SLH
a_k = Destroy("k")
S = identity_matrix(2) * S_mult
L = [sqrt(kappa_1)*a_k, sqrt(kappa_2)*a_k]
H = Delta*a_k.dag()*a_k + chi/2*a_k.dag()*a_k.dag()*a_k*a_k
KERR = SLH(S, L, H).toSLH()
# Construct H_num and L_num for a driven system
SYS = KERR.toSLH()
SYS_num = SYS.substitute(params)
SYS_num.space.dimension = Nfock
H2, L2s = SYS_num.HL_to_qutip()
obs = [a_k.dag()*a_k, a_k+a_k.dag(), (a_k-a_k.dag())/1j]
obsq = [o.to_qutip(full_space = SYS_num.space) for o in obs]
psi0 = qutip.tensor(qutip.basis(Nfock,0)).data
obsq_data = [ob.data for ob in obsq]
return H1.data, H2.data, psi0, [L.data for L in L1s], [L.data for L in L2s], obsq_data, obs
def make_system_kerr_two_systems(Nfock, params_dict, drive_second_system=False, S_mult=-1.):
# Define Kerr parameters
chi = symbols("chi", real=True, positive=True)
Delta = symbols("Delta", real=True)
kappa_1, kappa_2 = symbols("kappa_1, kappa_2", real=True, positive=True)
alpha0 = symbols("alpha_0")
params = {alpha0: params_dict["alpha0"],
chi: params_dict["chi"],
Delta: params_dict["Delta"],
kappa_1: params_dict["kappa_1"],
kappa_2: params_dict["kappa_2"],
}
# Construct Kerr SLH
a_k = Destroy("k")
S = identity_matrix(2) * S_mult
L = [sqrt(kappa_1)*a_k, sqrt(kappa_2)*a_k]
H = Delta*a_k.dag()*a_k + chi/2*a_k.dag()*a_k.dag()*a_k*a_k
KERR = SLH(S, L, H).toSLH()
# Add coherent drive
SYS = KERR << Displace(alpha=alpha0)+cid(1)
# Construct H_num and L_num for a driven system
SYS = SYS.toSLH()
SYS_num = SYS.substitute(params)
SYS_num.space.dimension = Nfock
H_num, L_num = SYS_num.HL_to_qutip()
# The first system is always driven
H1, L1s = H_num, L_num
## Make the second H_num and L_num. It may or may not be driven.
if drive_second_system:
H2, L2s = H_num, L_num
else:
# H_num and L_num for non-driven system
SYS_no_drive = KERR.toSLH()
SYS_num_no_drive = SYS_no_drive.substitute(params)
SYS_num_no_drive.space.dimension = Nfock
H_no_drive_num, L_no_drive_num = SYS_num_no_drive.HL_to_qutip()
H2, L2s = H_no_drive_num, L_no_drive_num
## Observables
obs = [a_k.dag()*a_k, a_k+a_k.dag(), (a_k-a_k.dag())/1j]
obsq = [o.to_qutip(full_space = SYS_num.space) for o in obs]
I = np.eye(Nfock)
## Extend the operators to the whole space.
obsq_data_kron = ([sparse.csr_matrix(np.kron(ob.data.todense(), I)) for ob in obsq]
+ [sparse.csr_matrix(np.kron(I, ob.data.todense())) for ob in obsq])
obs_two_systems = np.concatenate([[a_k.dag()*a_k, a_k+a_k.dag(), (a_k-a_k.dag())/1j]
for a_k in [Destroy('1'), Destroy('2')]])
psi0 = sparse.csr_matrix(([1] + [0]*(Nfock**2-1)),dtype=np.complex128).T
return H1.data, H2.data, psi0, [L.data for L in L1s], [L.data for L in L2s], obsq_data_kron, obs_two_systems