-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnetx2.py
42 lines (39 loc) · 2.14 KB
/
netx2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import tensorflow as tf
import numpy as np
'''
Developed by Tiantong for NTIER CVPR 2017 SR Competition
tong.renly@gmail.com
'''
def model(input_tensor):
with tf.device("/gpu:0"):
weights = []
activations_cl = []
conv_00_w = tf.get_variable("conv_00_w", [5, 5, 4, 64],
initializer=tf.random_normal_initializer(stddev=np.sqrt(2.0/9)))
conv_00_b = tf.get_variable("conv_00_b", [64], initializer=tf.constant_initializer(0))
weights.append(conv_00_w)
weights.append(conv_00_b)
activations = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(input_tensor, conv_00_w,
strides=[1, 1, 1, 1], padding='SAME'), conv_00_b),
"conv_00_a")
activations_cl.append(activations)
for i in range(10):
conv_w = tf.get_variable("conv_%02d_w" % (i+1), [3, 3, 64, 64],
initializer=tf.random_normal_initializer(stddev=np.sqrt(2.0/9/64)))
conv_b = tf.get_variable("conv_%02d_b" % (i+1), [64], initializer=tf.constant_initializer(0))
weights.append(conv_w)
weights.append(conv_b)
activations = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(activations, conv_w,
strides=[1, 1, 1, 1], padding='SAME'), conv_b),
"conv_%02d_a" % (i + 1))
activations_cl.append(activations)
conv_w = tf.get_variable("conv_20_w", [3, 3, 64, 4],
initializer=tf.random_normal_initializer(stddev=np.sqrt(2.0/9/64)))
conv_b = tf.get_variable("conv_20_b", [4], initializer=tf.constant_initializer(0))
weights.append(conv_w)
weights.append(conv_b)
activations = tf.nn.bias_add(value=tf.nn.conv2d(activations, conv_w,
strides=[1, 1, 1, 1], padding='SAME'), bias=conv_b,
name="conv_20_a")
activations_cl.append(activations)
return activations, weights, activations_cl