-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun.py
290 lines (245 loc) · 10.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import torch
from accelerate import Accelerator
from accelerate.utils import DistributedDataParallelKwargs
from datasets import load_dataset, concatenate_datasets
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
default_data_collator,
get_linear_schedule_with_warmup,
set_seed,
)
from peft import LoraConfig, TaskType, get_peft_model
from peft.tuners.lora import LoraLayer
from peft.utils import transpose
import fire
from functools import partial
import bitsandbytes as bnb
from peft import prepare_model_for_int8_training
import math
import wandb
import math
class EWCLoRAModel(torch.nn.Module):
def __init__(self, model_name_or_path, fisher_matrix_path, accelerator, ewc_lambda=1):
super().__init__()
self.model = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=True, device_map={"": accelerator.local_process_index})
self.model = prepare_model_for_int8_training(self.model)
self.fisher_matrix = AutoModelForCausalLM.from_pretrained(fisher_matrix_path, load_in_8bit=True, device_map={"": accelerator.local_process_index})
self.fisher_matrix.eval()
self.fisher_matrix.requires_grad_(False)
self.ewc_lambda = ewc_lambda
def get_peft_model(self, peft_config):
self.model = get_peft_model(self.model, peft_config)
def print_trainable_parameters(self):
self.model.print_trainable_parameters()
def forward(self, **kwargs):
labels = kwargs.pop("labels")
label_weights = kwargs.pop("label_weights")
outputs = self.model(**kwargs)
logits = outputs.logits
ce_loss_fn = torch.nn.CrossEntropyLoss(reduction='none')
ce_loss = ce_loss_fn(logits.view(-1, logits.size(-1)), labels.view(-1))
label_weights = label_weights.view(-1)
ce_loss = torch.sum(ce_loss * label_weights) / torch.sum(label_weights > 0)
# EWC loss
fisher_matrix_module_dict = {name: module for name, module in self.fisher_matrix.named_modules()}
ewc_loss = 0
for name, module in self.model.named_modules():
if isinstance(module, LoraLayer):
if module.active_adapter not in module.lora_A.keys():
continue
if isinstance(module, bnb.nn.Linear8bitLt):
fan_in_fan_out=False
else:
fan_in_fan_out = module.fan_in_fan_out
adapter_weights = transpose(
module.lora_B[module.active_adapter].weight @ module.lora_A[module.active_adapter].weight,
fan_in_fan_out,
) * module.scaling[module.active_adapter]
name = name.replace('base_model.model.', '')
fisher_matrix_weights = fisher_matrix_module_dict[name].weight
ewc_loss += torch.sum(fisher_matrix_weights * (adapter_weights ** 2))
loss = ce_loss + self.ewc_lambda * ewc_loss
outputs.loss = loss
outputs.ce_loss = ce_loss
outputs.ewc_loss = ewc_loss
return outputs
def generate(self, **kwargs):
return self.model.generate(**kwargs)
def save_pretrained(self, *args, **kwargs):
self.model.save_pretrained(*args, **kwargs)
def train(self, mode=True):
self.model.train(mode)
def eval(self):
self.model.eval()
def main(
model_name_or_path="EleutherAI/gpt-neo-1.3B",
fisher_matrix_path="fisher_matrix.pt",
train_file="train.json",
text_column="input",
label_column="ref",
lr=1e-3,
num_epochs=5,
per_device_train_batch_size=1,
gradient_accumulation_steps=1,
seed=42,
max_src_len=800,
max_tgt_len=256,
ewc_lambda=1,
num_beams=1,
output_dir="output",
lora_r=8,
lora_alpha=32,
use_wandb=False,
):
if use_wandb:
wandb_args = {'model': model_name_or_path.split('/')[-1],
'val_file': val_file,
'lr': lr,
'num_epochs': num_epochs,
'per_device_train_batch_size': per_device_train_batch_size,
'ewc_lambda': ewc_lambda,
'lora_r': lora_r,
'lora_alpha': lora_alpha,
'num_beams': num_beams}
kwargs = DistributedDataParallelKwargs(static_graph=True)
accelerator = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps, kwargs_handlers=[kwargs])
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=lora_r,
lora_alpha=lora_alpha,
lora_dropout=0.1
)
set_seed(seed)
def assign_weight(examples, weight):
examples["weight"] = [weight] * len(examples[text_column])
return examples
train_datasets = []
train_files = train_file.split()
# If only one dataset is given without weights
if len(train_files) == 1:
train_files.insert(0, '1')
for weight, train_file in zip(train_files[::2], train_files[1::2]):
train_dataset = load_dataset(
train_file.split(".")[-1],
data_files={'train': train_file},
)['train']
with accelerator.main_process_first():
train_dataset = train_dataset.map(
partial(assign_weight, weight=float(weight)),
batched=True,
)
train_datasets.append(train_dataset)
train_name = train_file.split("/")[-1].split(".")[0]
if use_wandb:
wandb_args[f'{train_name}_weight'] = weight
train_dataset = concatenate_datasets(train_datasets)
if use_wandb and accelerator.is_main_process:
wandb.init(project='ewc-lora', config=wandb_args, save_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
def preprocess_function(examples, is_train=True):
assert text_column != 'model_input'
if is_train:
tokenizer.padding_side = 'right'
examples['model_input'] = [
f'{inp} {ref}\n' for inp, ref in zip(examples[text_column], examples[label_column])
]
else:
tokenizer.padding_side = 'left'
examples['model_input'] = examples[text_column]
batch = tokenizer(
examples['model_input'],
max_length=max_src_len,
padding='max_length',
truncation=True,
add_special_tokens=False,
return_tensors='pt',
)
if is_train:
prefix_weights = tokenizer(
examples[text_column],
max_length=max_src_len,
padding='max_length',
truncation=True,
add_special_tokens=False,
return_tensors='pt',
).attention_mask[:, 1:]
batch['labels'] = batch['input_ids'][:, 1:]
batch['input_ids'] = batch['input_ids'][:, :-1]
batch['attention_mask'] = batch['attention_mask'][:, 1:]
batch['label_weights'] = batch['attention_mask'] * (1 - prefix_weights).float()
if 'weight' in examples:
batch['label_weights'] *= torch.tensor(examples['weight'])[:, None]
return batch
with accelerator.main_process_first():
train_dataset = train_dataset.map(
partial(preprocess_function, is_train=True),
batched=True,
num_proc=1,
remove_columns=train_dataset.column_names,
load_from_cache_file=True,
desc="Running tokenizer on dataset",
)
accelerator.wait_for_everyone()
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=per_device_train_batch_size, pin_memory=True
)
#print(next(iter(train_dataloader)))
# creating model
model = EWCLoRAModel(model_name_or_path, fisher_matrix_path, accelerator, ewc_lambda=ewc_lambda)
model.get_peft_model(peft_config)
model.print_trainable_parameters()
# optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
# lr scheduler
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=(len(train_dataloader) * num_epochs),
)
gen_kwargs = {
'max_new_tokens': max_tgt_len,
'num_beams': num_beams,
'pad_token_id': tokenizer.eos_token_id,
}
model, train_dataloader, optimizer, lr_scheduler = accelerator.prepare(
model, train_dataloader, optimizer, lr_scheduler
)
accelerator.print(model)
for epoch in range(num_epochs):
model.train()
total_loss = 0
progress_bar = tqdm(range(math.ceil(len(train_dataloader) / gradient_accumulation_steps)), disable=not accelerator.is_local_main_process)
for batch in train_dataloader:
with accelerator.accumulate(model):
outputs = model(**batch)
loss = outputs.loss
loss_num = loss.detach().cpu().item()
total_loss += loss_num
ce_loss = outputs.ce_loss.detach().cpu().item()
ewc_loss = outputs.ewc_loss.detach().cpu().item()
progress_bar.set_description(f"Epoch {epoch} - Loss: {loss_num:.4f}, CE Loss: {ce_loss:.4f}, EWC Loss: {ewc_loss:.4f}")
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
progress_bar.update(1)
if use_wandb and accelerator.is_main_process:
wandb.log({'s_loss': loss_num,
's_ce_loss': ce_loss,
's_ewc_loss': ewc_loss})
train_epoch_loss = total_loss / len(train_dataloader)
accelerator.print(f"{epoch=}: {train_epoch_loss=}")
# saving model
accelerator.print(f"Saving model to {output_dir}...")
accelerator.unwrap_model(model).save_pretrained(output_dir)
if use_wandb and accelerator.is_main_process:
wandb.log({'train_loss': train_epoch_loss})
accelerator.wait_for_everyone()
if __name__ == "__main__":
fire.Fire(main)