-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinputs.py
434 lines (373 loc) · 18.6 KB
/
inputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model input function for tf-learn object detection model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import tensorflow as tf
from object_detection.builders import dataset_builder
from object_detection.builders import image_resizer_builder
from object_detection.builders import model_builder
from object_detection.builders import preprocessor_builder
from object_detection.core import preprocessor
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.protos import eval_pb2
from object_detection.protos import input_reader_pb2
from object_detection.protos import model_pb2
from object_detection.protos import train_pb2
from object_detection.utils import config_util
from object_detection.utils import dataset_util
from object_detection.utils import ops as util_ops
HASH_KEY = 'hash'
HASH_BINS = 1 << 31
SERVING_FED_EXAMPLE_KEY = 'serialized_example'
def transform_input_data(tensor_dict,
model_preprocess_fn,
image_resizer_fn,
num_classes,
data_augmentation_fn=None,
merge_multiple_boxes=False,
retain_original_image=False):
"""A single function that is responsible for all input data transformations.
Data transformation functions are applied in the following order.
1. data_augmentation_fn (optional): applied on tensor_dict.
2. model_preprocess_fn: applied only on image tensor in tensor_dict.
3. image_resizer_fn: applied only on instance mask tensor in tensor_dict.
4. one_hot_encoding: applied to classes tensor in tensor_dict.
5. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
same they can be merged into a single box with an associated k-hot class
label.
Args:
tensor_dict: dictionary containing input tensors keyed by
fields.InputDataFields.
model_preprocess_fn: model's preprocess function to apply on image tensor.
This function must take in a 4-D float tensor and return a 4-D preprocess
float tensor and a tensor containing the true image shape.
image_resizer_fn: image resizer function to apply on groundtruth instance
masks. This function must take a 4-D float tensor of image and a 4-D
tensor of instances masks and return resized version of these along with
the true shapes.
num_classes: number of max classes to one-hot (or k-hot) encode the class
labels.
data_augmentation_fn: (optional) data augmentation function to apply on
input `tensor_dict`.
merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
and classes for a given image if the boxes are exactly the same.
retain_original_image: (optional) whether to retain original image in the
output dictionary.
Returns:
A dictionary keyed by fields.InputDataFields containing the tensors obtained
after applying all the transformations.
"""
if retain_original_image:
tensor_dict[fields.InputDataFields.
original_image] = tensor_dict[fields.InputDataFields.image]
# Apply data augmentation ops.
if data_augmentation_fn is not None:
tensor_dict = data_augmentation_fn(tensor_dict)
# Apply model preprocessing ops and resize instance masks.
image = tf.expand_dims(
tf.to_float(tensor_dict[fields.InputDataFields.image]), axis=0)
preprocessed_resized_image, true_image_shape = model_preprocess_fn(image)
tensor_dict[fields.InputDataFields.image] = tf.squeeze(
preprocessed_resized_image, axis=0)
tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze(
true_image_shape, axis=0)
if fields.InputDataFields.groundtruth_instance_masks in tensor_dict:
masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
_, resized_masks, _ = image_resizer_fn(image, masks)
tensor_dict[fields.InputDataFields.
groundtruth_instance_masks] = resized_masks
# Transform groundtruth classes to one hot encodings.
label_offset = 1
zero_indexed_groundtruth_classes = tensor_dict[
fields.InputDataFields.groundtruth_classes] - label_offset
tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
zero_indexed_groundtruth_classes, num_classes)
if merge_multiple_boxes:
merged_boxes, merged_classes, _ = util_ops.merge_boxes_with_multiple_labels(
tensor_dict[fields.InputDataFields.groundtruth_boxes],
zero_indexed_groundtruth_classes, num_classes)
tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes
tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes
return tensor_dict
def augment_input_data(tensor_dict, data_augmentation_options):
"""Applies data augmentation ops to input tensors.
Args:
tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
data_augmentation_options: A list of tuples, where each tuple contains a
function and a dictionary that contains arguments and their values.
Usually, this is the output of core/preprocessor.build.
Returns:
A dictionary of tensors obtained by applying data augmentation ops to the
input tensor dictionary.
"""
tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
tf.to_float(tensor_dict[fields.InputDataFields.image]), 0)
include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
in tensor_dict)
include_keypoints = (fields.InputDataFields.groundtruth_keypoints
in tensor_dict)
tensor_dict = preprocessor.preprocess(
tensor_dict, data_augmentation_options,
func_arg_map=preprocessor.get_default_func_arg_map(
include_instance_masks=include_instance_masks,
include_keypoints=include_keypoints))
tensor_dict[fields.InputDataFields.image] = tf.squeeze(
tensor_dict[fields.InputDataFields.image], axis=0)
return tensor_dict
def create_train_input_fn(train_config, train_input_config,
model_config):
"""Creates a train `input` function for `Estimator`.
Args:
train_config: A train_pb2.TrainConfig.
train_input_config: An input_reader_pb2.InputReader.
model_config: A model_pb2.DetectionModel.
Returns:
`input_fn` for `Estimator` in TRAIN mode.
"""
def _train_input_fn(params=None):
"""Returns `features` and `labels` tensor dictionaries for training.
Args:
params: Parameter dictionary passed from the estimator.
Returns:
features: Dictionary of feature tensors.
features[fields.InputDataFields.image] is a [batch_size, H, W, C]
float32 tensor with preprocessed images.
features[HASH_KEY] is a [batch_size] int32 tensor representing unique
identifiers for the images.
features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
int32 tensor representing the true image shapes, as preprocessed
images could be padded.
labels: Dictionary of groundtruth tensors.
labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
int32 tensor indicating the number of groundtruth boxes.
labels[fields.InputDataFields.groundtruth_boxes] is a
[batch_size, num_boxes, 4] float32 tensor containing the corners of
the groundtruth boxes.
labels[fields.InputDataFields.groundtruth_classes] is a
[batch_size, num_boxes, num_classes] float32 one-hot tensor of
classes.
labels[fields.InputDataFields.groundtruth_weights] is a
[batch_size, num_boxes] float32 tensor containing groundtruth weights
for the boxes.
-- Optional --
labels[fields.InputDataFields.groundtruth_instance_masks] is a
[batch_size, num_boxes, H, W] float32 tensor containing only binary
values, which represent instance masks for objects.
labels[fields.InputDataFields.groundtruth_keypoints] is a
[batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
keypoints for each box.
Raises:
TypeError: if the `train_config` or `train_input_config` are not of the
correct type.
"""
if not isinstance(train_config, train_pb2.TrainConfig):
raise TypeError('For training mode, the `train_config` must be a '
'train_pb2.TrainConfig.')
if not isinstance(train_input_config, input_reader_pb2.InputReader):
raise TypeError('The `train_input_config` must be a '
'input_reader_pb2.InputReader.')
if not isinstance(model_config, model_pb2.DetectionModel):
raise TypeError('The `model_config` must be a '
'model_pb2.DetectionModel.')
data_augmentation_options = [
preprocessor_builder.build(step)
for step in train_config.data_augmentation_options
]
data_augmentation_fn = functools.partial(
augment_input_data, data_augmentation_options=data_augmentation_options)
model = model_builder.build(model_config, is_training=True)
image_resizer_config = config_util.get_image_resizer_config(model_config)
image_resizer_fn = image_resizer_builder.build(image_resizer_config)
transform_data_fn = functools.partial(
transform_input_data, model_preprocess_fn=model.preprocess,
image_resizer_fn=image_resizer_fn,
num_classes=config_util.get_number_of_classes(model_config),
data_augmentation_fn=data_augmentation_fn)
dataset = dataset_builder.build(
train_input_config,
transform_input_data_fn=transform_data_fn,
batch_size=params['batch_size'] if params else train_config.batch_size,
max_num_boxes=train_config.max_number_of_boxes,
num_classes=config_util.get_number_of_classes(model_config),
spatial_image_shape=config_util.get_spatial_image_size(
image_resizer_config))
tensor_dict = dataset_util.make_initializable_iterator(dataset).get_next()
hash_from_source_id = tf.string_to_hash_bucket_fast(
tensor_dict[fields.InputDataFields.source_id], HASH_BINS)
features = {
fields.InputDataFields.image: tensor_dict[fields.InputDataFields.image],
HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
fields.InputDataFields.true_image_shape: tensor_dict[
fields.InputDataFields.true_image_shape]
}
labels = {
fields.InputDataFields.num_groundtruth_boxes: tensor_dict[
fields.InputDataFields.num_groundtruth_boxes],
fields.InputDataFields.groundtruth_boxes: tensor_dict[
fields.InputDataFields.groundtruth_boxes],
fields.InputDataFields.groundtruth_classes: tensor_dict[
fields.InputDataFields.groundtruth_classes],
fields.InputDataFields.groundtruth_weights: tensor_dict[
fields.InputDataFields.groundtruth_weights]
}
if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
labels[fields.InputDataFields.groundtruth_keypoints] = tensor_dict[
fields.InputDataFields.groundtruth_keypoints]
if fields.InputDataFields.groundtruth_instance_masks in tensor_dict:
labels[fields.InputDataFields.groundtruth_instance_masks] = tensor_dict[
fields.InputDataFields.groundtruth_instance_masks]
return features, labels
return _train_input_fn
def create_eval_input_fn(eval_config, eval_input_config, model_config):
"""Creates an eval `input` function for `Estimator`.
Args:
eval_config: An eval_pb2.EvalConfig.
eval_input_config: An input_reader_pb2.InputReader.
model_config: A model_pb2.DetectionModel.
Returns:
`input_fn` for `Estimator` in EVAL mode.
"""
def _eval_input_fn(params=None):
"""Returns `features` and `labels` tensor dictionaries for evaluation.
Args:
params: Parameter dictionary passed from the estimator.
Returns:
features: Dictionary of feature tensors.
features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
with preprocessed images.
features[HASH_KEY] is a [1] int32 tensor representing unique
identifiers for the images.
features[fields.InputDataFields.true_image_shape] is a [1, 3]
int32 tensor representing the true image shapes, as preprocessed
images could be padded.
features[fields.InputDataFields.original_image] is a [1, H', W', C]
float32 tensor with the original image.
labels: Dictionary of groundtruth tensors.
labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
float32 tensor containing the corners of the groundtruth boxes.
labels[fields.InputDataFields.groundtruth_classes] is a
[num_boxes, num_classes] float32 one-hot tensor of classes.
labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
float32 tensor containing object areas.
labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
bool tensor indicating if the boxes enclose a crowd.
labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
int32 tensor indicating if the boxes represent difficult instances.
-- Optional --
labels[fields.InputDataFields.groundtruth_instance_masks] is a
[1, num_boxes, H, W] float32 tensor containing only binary values,
which represent instance masks for objects.
Raises:
TypeError: if the `eval_config` or `eval_input_config` are not of the
correct type.
"""
del params
if not isinstance(eval_config, eval_pb2.EvalConfig):
raise TypeError('For eval mode, the `eval_config` must be a '
'train_pb2.EvalConfig.')
if not isinstance(eval_input_config, input_reader_pb2.InputReader):
raise TypeError('The `eval_input_config` must be a '
'input_reader_pb2.InputReader.')
if not isinstance(model_config, model_pb2.DetectionModel):
raise TypeError('The `model_config` must be a '
'model_pb2.DetectionModel.')
num_classes = config_util.get_number_of_classes(model_config)
model = model_builder.build(model_config, is_training=False)
image_resizer_config = config_util.get_image_resizer_config(model_config)
image_resizer_fn = image_resizer_builder.build(image_resizer_config)
transform_data_fn = functools.partial(
transform_input_data, model_preprocess_fn=model.preprocess,
image_resizer_fn=image_resizer_fn,
num_classes=num_classes,
data_augmentation_fn=None,
retain_original_image=True)
dataset = dataset_builder.build(eval_input_config,
transform_input_data_fn=transform_data_fn)
input_dict = dataset_util.make_initializable_iterator(dataset).get_next()
hash_from_source_id = tf.string_to_hash_bucket_fast(
input_dict[fields.InputDataFields.source_id], HASH_BINS)
features = {
fields.InputDataFields.image:
input_dict[fields.InputDataFields.image],
fields.InputDataFields.original_image:
input_dict[fields.InputDataFields.original_image],
HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
fields.InputDataFields.true_image_shape:
input_dict[fields.InputDataFields.true_image_shape]
}
labels = {
fields.InputDataFields.groundtruth_boxes:
input_dict[fields.InputDataFields.groundtruth_boxes],
fields.InputDataFields.groundtruth_classes:
input_dict[fields.InputDataFields.groundtruth_classes],
fields.InputDataFields.groundtruth_area:
input_dict[fields.InputDataFields.groundtruth_area],
fields.InputDataFields.groundtruth_is_crowd:
input_dict[fields.InputDataFields.groundtruth_is_crowd],
fields.InputDataFields.groundtruth_difficult:
tf.cast(input_dict[fields.InputDataFields.groundtruth_difficult],
tf.int32)
}
if fields.InputDataFields.groundtruth_instance_masks in input_dict:
labels[fields.InputDataFields.groundtruth_instance_masks] = input_dict[
fields.InputDataFields.groundtruth_instance_masks]
# Add a batch dimension to the tensors.
features = {
key: tf.expand_dims(features[key], axis=0)
for key, feature in features.items()
}
labels = {
key: tf.expand_dims(labels[key], axis=0)
for key, label in labels.items()
}
return features, labels
return _eval_input_fn
def create_predict_input_fn(model_config):
"""Creates a predict `input` function for `Estimator`.
Args:
model_config: A model_pb2.DetectionModel.
Returns:
`input_fn` for `Estimator` in PREDICT mode.
"""
def _predict_input_fn(params=None):
"""Decodes serialized tf.Examples and returns `ServingInputReceiver`.
Args:
params: Parameter dictionary passed from the estimator.
Returns:
`ServingInputReceiver`.
"""
del params
example = tf.placeholder(dtype=tf.string, shape=[], name='input_feature')
num_classes = config_util.get_number_of_classes(model_config)
model = model_builder.build(model_config, is_training=False)
image_resizer_config = config_util.get_image_resizer_config(model_config)
image_resizer_fn = image_resizer_builder.build(image_resizer_config)
transform_fn = functools.partial(
transform_input_data, model_preprocess_fn=model.preprocess,
image_resizer_fn=image_resizer_fn,
num_classes=num_classes,
data_augmentation_fn=None)
decoder = tf_example_decoder.TfExampleDecoder(load_instance_masks=False)
input_dict = transform_fn(decoder.decode(example))
images = tf.to_float(input_dict[fields.InputDataFields.image])
images = tf.expand_dims(images, axis=0)
return tf.estimator.export.ServingInputReceiver(
features={fields.InputDataFields.image: images},
receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})
return _predict_input_fn