-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvideo_inference.py
84 lines (65 loc) · 1.92 KB
/
video_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from keras.models import load_model
from keras.preprocessing.image import img_to_array
import os
import numpy as np
import cv2
import time
Y_MAX = 564
Y_MIN = 308
X_MAX = 706
X_MIN = 450
LEFT_MIN = (280,141)
LEFT_MAX = (522,351)
CENTER_MIN = (522,141)
CENTER_MAX = (764,351)
RIGHT_MIN = (764,141)
RIGHT_MAX = (1006,351)
model_dir = 'model'
model_name = 'model_complete.h5'
# load model
model = load_model(os.path.join(model_dir, model_name))
video_path = 'data/video'
video_name = 'test.mp4'
vid = cv2.VideoCapture(os.path.join(video_path, video_name))
vid.set(cv2.CAP_PROP_POS_MSEC,33.3)
#fourcc = cv2.VideoWriter_fourcc(*'DIVX')
#out = cv2.VideoWriter('output.avi', fourcc, 60.0, (1280,720))
index = 0
while(True):
start = time.time()
ret, frame = vid.read()
if not ret:
break
# frame.shape = (720, 1280, 3)
# lets cropped the one we want
crop = frame[Y_MIN:Y_MAX, X_MIN:X_MAX]
img = crop.astype('float')/255.0
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
pred = model.predict(img)
pred = pred.argmax(axis=1)[0]
label = ""
if(pred == 0):
label = "center"
#cv2.rectangle(frame, CENTER_MIN, CENTER_MAX, (255,0,0), 1)
elif(pred == 1):
label = "left"
#cv2.rectangle(frame, LEFT_MIN, LEFT_MAX, (0,255,0), 1)
elif(pred == 2):
label = "right"
#cv2.rectangle(frame, RIGHT_MIN, RIGHT_MAX, (0,0,225), 1)
else:
label = "unknown"
end = time.time()
time_diff = str(int(1/(end-start))) + " FPS"
cv2.putText(frame, time_diff, (3,30), cv2.FONT_HERSHEY_DUPLEX, 1.0, (0,0,255), 2)
cv2.putText(frame, label, (1150,30), cv2.FONT_HERSHEY_DUPLEX, 1.0, (0,0,255), 2)
#out.write(frame)
#name = '/result/video_frames' + str(index) + '.jpg'
#cv2.imwrite(name, frame)
cv2.imshow("output", frame)
cv2.waitKey(0)
#index += 1
#vid.release()
#out.release()
#cv2.destroyAllWindows()