-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvar_analysis.py
394 lines (340 loc) · 17.6 KB
/
var_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import numpy as np
import os
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
import torch.optim as optim
from torch.utils.data import DataLoader
from dpvo.data_readers.factory import dataset_factory
from dpvo.net import VONet
import argparse
import torch_scatter
from torch_scatter import scatter_sum
from dpvo import fastba
from dpvo import altcorr
from dpvo import lietorch
from dpvo.lietorch import SE3
from dpvo.extractor import BasicEncoder, BasicEncoder4
from dpvo.blocks import GradientClip, GatedResidual, SoftAgg, GradientsAlign, GradientsAlignLog
from dpvo.utils import *
from dpvo.ba import BA
from dpvo import projective_ops as pops
import ipdb
autocast = torch.cuda.amp.autocast
import matplotlib.pyplot as plt
from matplotlib import rc
# rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
# rc('text', usetex=True)
plt.style.use("ggplot")
def flow_loss(x, y):
return (x - y).norm(dim=-1).mean()
def pose_loss(P1, P2):
N = P1.shape[1]
ii, jj = torch.meshgrid(torch.arange(N), torch.arange(N))
ii = ii.reshape(-1).cuda()
jj = jj.reshape(-1).cuda()
k = ii != jj
ii = ii[k]
jj = jj[k]
P1 = P1.inv()
P2 = P2.inv()
t1 = P1.matrix()[...,:3,3]
t2 = P2.matrix()[...,:3,3]
s = kabsch_umeyama(t2[0], t1[0]).detach().clamp(max=10.0)
P1 = P1.scale(s.view(1, 1))
dP = P1[:,ii].inv() * P1[:,jj]
dG = P2[:,ii].inv() * P2[:,jj]
e1 = (dP * dG.inv()).log()
tr = e1[...,0:3].norm(dim=-1)
ro = e1[...,3:6].norm(dim=-1)
ro_l = ro.mean()
tr_l = tr.mean()
pose_loss = ( tr_l + 5.0*ro_l )
return pose_loss
def seeding(seed=0, torch_deterministic=False):
print("Setting seed: {}".format(seed))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# if torch_deterministic:
# # refer to https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility
# os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
# torch.backends.cudnn.benchmark = False
# torch.backends.cudnn.deterministic = True
# torch.use_deterministic_algorithms(True)
# else:
# torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = False
return seed
def kabsch_umeyama(A, B):
n, m = A.shape
EA = torch.mean(A, axis=0)
EB = torch.mean(B, axis=0)
VarA = torch.mean((A - EA).norm(dim=1)**2)
H = ((A - EA).T @ (B - EB)) / n
U, D, VT = torch.svd(H)
c = VarA / torch.trace(torch.diag(D))
return c
def load_ckpt(net, args, step):
ckpt = args.ckpt + '_%06d.pth' % step
state_dict = torch.load(ckpt)
new_state_dict = OrderedDict()
for k, v in state_dict.items():
new_state_dict[k.replace('module.', '')] = v
net.load_state_dict(new_state_dict, strict=False)
optimizer = torch.optim.AdamW(net.parameters(), lr=args.lr, weight_decay=1e-6)
return optimizer
def groundtruths(images, disps, intrinsics, poses, net):
images = 2 * (images / 255.0) - 0.5
intrinsics = intrinsics / 4.0
disps = disps[:, :, 1::4, 1::4].float()
_, _, _, patches, ix = net.patchify(images, disps=disps)
p = net.P
patches_gt = patches.clone()
Ps = poses
d = patches[..., 2, p//2, p//2]
patches = set_depth(patches, torch.rand_like(d))
kk, jj = flatmeshgrid(torch.where(ix < 8)[0], torch.arange(0,8, device="cuda"))
ii = ix[kk]
return Ps, patches, patches_gt, ii, jj, kk
def flow_loss_interference(args):
seeding(12)
db = dataset_factory(['tartan'], datapath="/project_data/datasets/TartanAir", n_frames=args.n_frames, test=args.test)
train_loader = DataLoader(db, batch_size=1, shuffle=True, num_workers=4)
net = VONet()
noise_level = 11
num_trials = 40
total_examples = 20
depth_grad_pose_error = [[] for _ in range(noise_level)]
pose_grad_pose_error = [[] for _ in range(noise_level)]
depth_grad_depth_error = [[] for _ in range(noise_level)]
pose_grad_depth_error = [[] for _ in range(noise_level)]
depth_grad_error_var = [[] for _ in range(noise_level)]
pose_grad_error_var = [[] for _ in range(noise_level)]
depth_grad_error_80 = [[] for _ in range(noise_level)]
num_examples = 0
net.cuda()
for data_blob in train_loader:
images, poses, disps, intrinsics = [x.cuda().float() for x in data_blob]
poses = SE3(poses).inv()
Ps, _, patches_gt, ii, jj, kk = groundtruths(images, disps, intrinsics, poses, net)
Gs = SE3(Ps.data.clone())
patches = patches_gt.clone()
coords_gt = pops.transform(Ps, patches_gt, intrinsics, ii, jj, kk)
depth_grads_pose = [[] for _ in range(noise_level)]
pose_grads_pose = [[] for _ in range(noise_level)]
pose_grads_depth = [[] for _ in range(noise_level)]
depth_grads_depth = [[] for _ in range(noise_level)]
for i in range(noise_level):
for j in range(num_trials):
pose_noise = torch.randn_like(Gs.data)[:, 0] * 0.02*(i)
Gs_new = SE3(Gs.data.clone())
Gs_new.data[:, 0] = Ps.data[:, 0] + pose_noise
Gs_new.normalize_()
Gs_new.data.requires_grad_(True)
depth_gt = patches_gt[...,2,:,:].clone()
depth_gt.requires_grad_(True)
patches_gt[...,2] = depth_gt
coords = pops.transform(Gs_new, patches_gt, intrinsics, ii, jj, kk)
fl_loss = flow_loss(coords, coords_gt)
depth_grad_pose = torch.autograd.grad(fl_loss, depth_gt, retain_graph=True)[0]
pose_grad_pose = torch.autograd.grad(fl_loss, Gs_new.data)[0][:, 1:]
depth_grads_pose[i].append(depth_grad_pose)
pose_grads_pose[i].append(pose_grad_pose)
for i in range(noise_level):
for j in range(num_trials):
depth_noise = torch.rand_like(patches[:,:80].data[...,2,:,:]) * 0.1*(i)
depth = patches.data[:,80:,2,:,:].clone()*0.0
depth.requires_grad_(True)
patches.data[:,:80,2,:,:] = patches_gt.data[:,:80,2,:,:] + depth_noise
patches[:,80:,2,:,:] = patches[:,80:,2,:,:] + depth
Ps.data.requires_grad_(True)
coords = pops.transform(Ps, patches, intrinsics, ii, jj, kk)
fl_loss = flow_loss(coords, coords_gt)
pose_grad = torch.autograd.grad(fl_loss, Ps.data, retain_graph=True)[0]
depth_grad = torch.autograd.grad(fl_loss, depth, retain_graph=True)[0]
pose_grads_depth[i].append(pose_grad)
depth_grads_depth[i].append(depth_grad)
for i in range(noise_level):
depth_grad_pose = torch.stack(depth_grads_pose[i], dim=0).view(num_trials, -1, 9).norm(dim=-1)
pose_grad_pose = torch.stack(pose_grads_pose[i], dim=0).view(num_trials, -1, 7).norm(dim=-1)
depth_grad_depth = torch.stack(depth_grads_depth[i], dim=0).view(num_trials, -1, 9).norm(dim=-1)
pose_grad_depth = torch.stack(pose_grads_depth[i], dim=0).view(num_trials, -1, 7).norm(dim=-1)
depth_grad_pose_error[i].append(depth_grad_pose.mean())
pose_grad_pose_error[i].append(pose_grad_pose.mean())
depth_grad_depth_error[i].append(depth_grad_depth.mean())
pose_grad_depth_error[i].append(pose_grad_depth.mean())
print(num_examples)
num_examples += 1
if num_examples > total_examples:
break
for i in range(noise_level):
depth_grad_pose_error[i] = torch.stack(depth_grad_pose_error[i], dim=0).mean(dim=0).item()
pose_grad_pose_error[i] = torch.stack(pose_grad_pose_error[i], dim=0).mean(dim=0).item()
depth_grad_depth_error[i] = torch.stack(depth_grad_depth_error[i], dim=0).mean(dim=0).item()
pose_grad_depth_error[i] = torch.stack(pose_grad_depth_error[i], dim=0).mean(dim=0).item()
noise_level_poses = torch.arange(0, 0.22, 0.02)
noise_level_depth = torch.arange(0, 1.1, 0.1)
flow_loss_interference_plot_all(depth_grad_pose_error, pose_grad_pose_error, depth_grad_depth_error, pose_grad_depth_error, noise_level_poses, noise_level_depth)
return None
def flow_loss_interference_plot_all(depth_grad_pose_error, pose_grad_pose_error, depth_grad_depth_error, pose_grad_depth_error, noise_level_poses, noise_level_depth):
folder = 'fl_loss_int/test_old4/'
if not os.path.exists(folder):
os.makedirs(folder)
fig, ax1 = plt.subplots(figsize=(5, 4))
line1, = ax1.plot(noise_level_depth, pose_grad_depth_error, label='Pose gradient error', color='#1f77b4')
line2, = ax1.plot(noise_level_depth, depth_grad_depth_error, label='Depth gradient error', color='#ff7f0e')
ax1.set_xlabel('Noise added to depth')
ax1.set_ylabel('Avg Grad Error Norm')
ax1.legend()
plt.savefig(folder+'vary_depth_flint.pdf')
fig, ax1 = plt.subplots(figsize=(6.2, 4))
line1, = ax1.plot(noise_level_poses, pose_grad_pose_error, label='Pose gradient error', color='#1f77b4')
ax1.set_xlabel('Noise added to pose')
ax1.set_ylabel('Avg Grad Error Norm', color='#1f77b4')
ax2 = ax1.twinx()
line2, = ax2.plot(noise_level_poses, depth_grad_pose_error, label='Depth gradient error', color='#ff7f0e')
ax2.set_ylabel('Avg Grad Error Norm', color='#ff7f0e')
ax1.tick_params(axis='y', labelcolor='#1f77b4')
ax2.tick_params(axis='y', labelcolor='#ff7f0e')
handles, labels = [], []
for ax in [ax1, ax2]:
h, l = ax.get_legend_handles_labels()
handles.extend(h)
labels.extend(l)
# Creating a combined legend inside the plot area
fig.legend(handles, labels, loc='lower right', bbox_to_anchor=(0.85, 0.15))
plt.savefig(folder+'vary_pose_flint.pdf')
def depth_pose_grad_linearization(args):
seeding(12)
db = dataset_factory(['tartan'], datapath="/project_data/datasets/TartanAir", n_frames=args.n_frames, test=args.test)
train_loader = DataLoader(db, batch_size=1, shuffle=True, num_workers=4)
net = VONet()
net.cuda()
total_steps = 0
num_examples = 0
total_examples = 20
wtd_obj = False
STEPS = 8
optimizer = load_ckpt(net, args, 240000)
noise_level = 21
flow_grad_depth_var = [[] for _ in range(noise_level)]
pose_grad_depth_var = [[] for _ in range(noise_level)]
flow_grad_pose_var = [[] for _ in range(noise_level)]
pose_grad_pose_var = [[] for _ in range(noise_level)]
for data_blob in train_loader:
images, poses, disps, intrinsics = [x.cuda().float() for x in data_blob]
optimizer.zero_grad()
so = False
poses = SE3(poses).inv()
with torch.no_grad():
traj, stats, logging, more_outs = net(images, poses, disps, intrinsics, M=1024, STEPS=STEPS, structure_only=so, wtd_loss=wtd_obj, total_steps=total_steps)
_, _, _, Gs, Ps, _, _, delta, weight_net, valid, target, _, _, _ = traj[-1]
patches, patches_gt, ii, jj, kk, bounds = more_outs[-1]
depth_grad_linearization(Gs, patches, patches_gt, intrinsics, target, Ps, weight_net, ii, jj, kk, bounds, noise_level, flow_grad_depth_var, pose_grad_depth_var, flow_grad_pose_var, pose_grad_pose_var)
num_examples += 1
if num_examples > total_examples:
break
for i in range(noise_level):
flow_grad_depth_var[i] = torch.stack(flow_grad_depth_var[i], dim=0).mean().item()
pose_grad_depth_var[i] = torch.stack(pose_grad_depth_var[i], dim=0).mean().item()
flow_grad_pose_var[i] = torch.stack(flow_grad_pose_var[i], dim=0).mean().item()
pose_grad_pose_var[i] = torch.stack(pose_grad_pose_var[i], dim=0).mean().item()
noise_level_poses = torch.arange(0, 2.1, 0.1)
noise_level_depth = torch.arange(0, 2.1, 0.1)
depth_pose_grad_linearization_plot(flow_grad_depth_var, pose_grad_depth_var, flow_grad_pose_var, pose_grad_pose_var, noise_level_poses, noise_level_depth)
return None
def depth_pose_grad_linearization_plot(flow_grad_depth_var, pose_grad_depth_var, flow_grad_pose_var, pose_grad_pose_var, noise_levels_poses, noise_levels_depth):
folder = 'ba_lin_figs/final_snrdb_paper/'
plt.figure(figsize=(5, 4))
plt.plot(noise_levels_depth[1:], flow_grad_depth_var[1:], label='Flow loss gradient')
plt.plot(noise_levels_depth[1:], pose_grad_depth_var[1:], label='Pose loss gradient')
plt.legend()
plt.xlabel('Noise added to depth')
plt.ylabel('SNR (db)')
plt.savefig(folder + 'linearization_issues_3.pdf')
return None
def depth_grad_linearization(Gs, patches, patches_gt, intrinsics, target, Ps, weight_net, ii, jj, kk, bounds, noise_level, flow_grad_depth_var, pose_grad_depth_var, flow_grad_pose_var, pose_grad_pose_var):
lmbda = 1e-4
ep = 10
structure_only = False
num_trials = 10
flow_grad_depth = [[] for _ in range(noise_level)]
pose_grad_depth = [[] for _ in range(noise_level)]
flow_grad_pose = [[] for _ in range(noise_level)]
pose_grad_pose = [[] for _ in range(noise_level)]
for i in range(noise_level):
for j in range(num_trials):
depth_noise = torch.randn_like(patches.data) * 0.1*(i)
patches_new = patches + depth_noise
target.requires_grad_(True)
Gs_out, patches_out = BA(Gs, patches_new, intrinsics, target, weight_net, lmbda, ii, jj, kk,
bounds, ep=ep, fixedp=1, structure_only=structure_only)
patches_out = patches_out + (patches - patches_out).detach().clone()
Gs_out.data = Gs_out.data + (Gs.data - Gs_out.data).detach().clone()
coords = pops.transform(Gs, patches_out, intrinsics, ii, jj, kk)
coords_gt = pops.transform(Ps, patches_gt, intrinsics, ii, jj, kk)
fl_loss = flow_loss(coords, coords_gt)
p_loss = pose_loss(Gs_out, Ps)
flow_grad_depth[i].append(torch.autograd.grad(fl_loss, target, retain_graph=True)[0])
pose_grad_depth[i].append(torch.autograd.grad(p_loss, target)[0])
for i in range(noise_level):
for j in range(num_trials):
pose_noise = torch.randn_like(Gs.data)[:, 0] * 0.01*(i)
Gs_new = SE3(Gs.data.clone())
Gs_new.data[:, 0] = Ps.data[:, 0] + pose_noise
Gs_new.normalize_()
target.requires_grad_(True)
Gs_out, patches_out = BA(Gs_new, patches, intrinsics, target, weight_net, lmbda, ii, jj, kk,
bounds, ep=ep, fixedp=1, structure_only=structure_only)
patches_out = patches_out + (patches - patches_out).detach().clone()
Gs_out.data = Gs_out.data + (Gs.data - Gs_out.data).detach().clone()
coords = pops.transform(Ps, patches_out, intrinsics, ii, jj, kk)
coords_gt = pops.transform(Ps, patches_gt, intrinsics, ii, jj, kk)
fl_loss = flow_loss(coords, coords_gt)
p_loss = pose_loss(Gs_out, Ps)
flow_grad_pose[i].append(torch.autograd.grad(fl_loss, target, retain_graph=True)[0])
pose_grad_pose[i].append(torch.autograd.grad(p_loss, target)[0])
## no noise gradient
target.requires_grad_(True)
Gs_out, patches_out = BA(Gs, patches, intrinsics, target, weight_net, lmbda, ii, jj, kk,
bounds, ep=ep, fixedp=1, structure_only=structure_only)
patches_out = patches_out + (patches - patches_out).detach().clone()
Gs_out.data = Gs_out.data + (Gs.data - Gs_out.data).detach().clone()
coords = pops.transform(Gs, patches_out, intrinsics, ii, jj, kk)
coords_gt = pops.transform(Ps, patches_gt, intrinsics, ii, jj, kk)
fl_loss = flow_loss(coords, coords_gt)
p_loss = pose_loss(Gs_out, Ps)
flow_grad_mean = torch.autograd.grad(fl_loss, target, retain_graph=True)[0].view(-1)
pose_grad_mean = torch.autograd.grad(p_loss, target)[0].view(-1)
for i in range(noise_level):
flow_grad_depth[i] = torch.stack(flow_grad_depth[i], dim=0).view(num_trials, -1)
flow_grad_depth_var[i].append(10 * torch.log10(flow_grad_mean.norm()/((flow_grad_depth[i] - flow_grad_mean).norm(dim=1).mean())))
pose_grad_depth[i] = torch.stack(pose_grad_depth[i], dim=0).view(num_trials, -1)
pose_grad_depth_var[i].append(10 * torch.log10(pose_grad_mean.norm()/((pose_grad_depth[i] - pose_grad_mean).norm(dim=1).mean())))
flow_grad_pose[i] = torch.stack(flow_grad_pose[i], dim=0).view(num_trials, -1)
flow_grad_pose_var[i].append(10 * torch.log10(flow_grad_mean.norm()/((flow_grad_pose[i] - flow_grad_mean).norm(dim=1).mean())))
pose_grad_pose[i] = torch.stack(pose_grad_pose[i], dim=0).view(num_trials, -1)
pose_grad_pose_var[i].append(10 * torch.log10(pose_grad_mean.norm()/((pose_grad_pose[i] - pose_grad_mean).norm(dim=1).mean())))
return None
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--name', default='bla', help='name your experiment')
parser.add_argument('--ckpt', help='checkpoint to restore')
parser.add_argument('--steps', type=int, default=240000)
parser.add_argument('--lr', type=float, default=0.00008)
parser.add_argument('--clip', type=float, default=10.0)
parser.add_argument('--n_frames', type=int, default=15)
parser.add_argument('--pose_weight', type=float, default=10.0)
parser.add_argument('--flow_weight', type=float, default=0.1)
parser.add_argument('--test', action='store_true')
parser.add_argument('--save_dir', type=str, default='runs')
parser.add_argument('--resume_train', action='store_true')
args = parser.parse_args()
flow_loss_interference(args)
depth_pose_grad_linearization(args)