-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_net_da.py
77 lines (66 loc) · 2.4 KB
/
train_net_da.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import default_argument_parser, default_setup, launch
from detectron2.evaluation import (
verify_results,
)
from da_faster import add_da_config
from da_faster.modeling.meta_arch.da_rcnn import DaGeneralizedRCNN # noqa
from da_faster.modeling.meta_arch.vgg import build_vgg_backbone # noqa
from da_faster.modeling.meta_arch.roi_heads import DaStandardROIHeads # noqa
from da_faster.engine.trainer import DATrainer
from da_faster.data.evaluator import build_evaluator
from da_faster.data.register import register_my_cityscapes
class My_Trainer(DATrainer):
"""
We use the "DATrainer" which contains pre-defined default logic for
standard training workflow. They may not work for you, especially if you
are working on a new research project. In that case you can write your
own training loop. You can use "tools/plain_train_net.py" as an example.
"""
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
return build_evaluator(cfg, dataset_name, output_folder)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
add_da_config(cfg)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
register_my_cityscapes()
if args.eval_only:
model = My_Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = My_Trainer.test(cfg, model)
if comm.is_main_process():
verify_results(cfg, res)
return res
"""
If you'd like to do anything fancier than the standard training logic,
consider writing your own training loop (see plain_train_net.py) or
subclassing the trainer.
"""
trainer = My_Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)