forked from spm/spm12
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spm_Ncdf_jdw.m
39 lines (35 loc) · 1.3 KB
/
spm_Ncdf_jdw.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
function F = spm_Ncdf_jdw(x,u,v)
% Cumulative Distribution Function (CDF) for univariate Normal distributions: J.D. Williams aproximation
% FORMAT F = spm_Ncdf_jdw(x,u,v)
%
% x - ordinates
% u - mean [Defaults to 0]
% v - variance (v>0) [Defaults to 1]
% F - pdf of N(u,v) at x (Lower tail probability)
%__________________________________________________________________________
%
% spm_Ncdf implements the Cumulative Distribution Function (CDF) for
% the Normal (Gaussian) family of distributions.
%
% References:
%--------------------------------------------------------------------------
% An Approximation to the Probability Integral
% J. D. Williams
% The Annals of Mathematical Statistics, Vol. 17, No. 3. (Sep., 1946), pp.
% 363-365.
%
%__________________________________________________________________________
% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging
% Karl Friston
% $Id: spm_Ncdf_jdw.m 4836 2012-08-10 15:55:21Z karl $
%-Format arguments
%--------------------------------------------------------------------------
if nargin < 3, v = 1; end
if nargin < 2, u = 0; end
%-Approximate integral
%--------------------------------------------------------------------------
x = (x - u)./sqrt(abs(v));
F = sqrt(1 - exp(-(2/pi)*x.^2))/2;
i = x < 0;
F(i) = -F(i);
F = F + 1/2;